Analysis of Mechanical Response of Two-phase Polycrystalline Microstructures with Distinctive Topology of Phase Clustering

2상 다결정 미세구조의 상 분포 위상에 따른 역학적 거동 분석

  • 정상엽 (연세대학교 사회환경시스템공학부) ;
  • 한동석 (연세대학교 사회환경시스템공학부)
  • Received : 2010.06.04
  • Accepted : 2010.09.17
  • Published : 2011.02.28

Abstract

An approach to understand the phase distribution in a multi-phase polycrystalline material is important since it can affect material properties and mechanical behaviors. A proper method is needed to describe the phase distribution. For this purpose, contiguity and probability functions(two-point correlation and lineal-path functions) are investigated for representing the phase distributions of microstructures. The mechanical behaviors are evaluated using the finite element method. The characteristics of probability functions and mechanical reponses of virtual samples are represented. It is confirmed that the topology of phase clustering affects the mechanical behavior of materials and that the strength is reduced as the clustering size increases.

다상 재료는 상(phase) 분포 상태에 의해 그 특성이 다르기 때문에 상 분포에 따른 재료의 특성을 이해하는 것이 중요하다. 본 연구에서는 미세구조의 상 분포 특성을 묘사할 수 있는 확률 분포 함수를 사용하여 등방성/이방성 미세구조의 상분포 상태를 표현하는 방법을 살펴보았다. 다양한 상 분포를 가진 미세구조들에 유한요소해석 기법을 적용하여 미세구조의 역학적인 거동을 분석함으로서, 상 군집의 분포 상태에 따른 재료의 강도 및 특성의 변화를 살펴보았다. 이를 통해 상 군집의 위상에 의한 재료 강도의 영향 및 군집 크기가 커질수록 강도가 낮아지는 현상을 확인하였다.

Keywords

References

  1. 우경식, 서영욱 (2001) 주자식 복합재료 미세구조의 응력 및 파괴해석, 한국전산구조공학회 논문집, 14(4), pp.455∼ 468.
  2. Chung. S.Y., Han, T.S. (2010) Reconstruction of Random Two-Phase Polycrystalline Solids using Low-Order Probability Functions and Evaluation of Mechanical Behavior, Computational Materials Science, 49, pp.705∼719. https://doi.org/10.1016/j.commatsci.2010.06.014
  3. Coker, D.A., Torquato, S. (1995) Extraction of Morphological Quantities from a Digitized Medium, Journal of Applied Physics, 77, pp.6087∼6099. https://doi.org/10.1063/1.359134
  4. Corson, P.B. (1974) Correlation Functions for Predicting Properties of Heterogeneous Materials. I. Experimental Measurement of Spatial Correlation Functions in Multiphase Solids, Journal of Applied Physics, 45, pp.3159∼3164. https://doi.org/10.1063/1.1663741
  5. Gokhale, A.M., Tewari, A., Garmestani, H. (2005) Constraint on Microstructural Two-Point Correlation Functions, Scripta Materialia, 53, pp.989∼993. https://doi.org/10.1016/j.scriptamat.2005.06.013
  6. Han, T.S., Dawson, P.R. (2005) Representation of Anisotropic Phase Morphology, Modelling and Simulation in Materials Science and Engineering, 13, pp.203∼223. https://doi.org/10.1088/0965-0393/13/2/004
  7. Han, T.S., Dawson, P.R. (2007) A Two-Scale Deformation Model for Polycrystalline Solids using a Strongly-Coupled Finite Element Methodology, Computer Methods in Applied Mechanics and Engineering, 196, pp.2029∼2043. https://doi.org/10.1016/j.cma.2006.11.001
  8. Kelly, A., Groves, G., Kidd, P. (2000) Crystallography and crystal defects, Wiley, Chichester, p.470.
  9. Lin, S., Garmestani, H., Adams, B. (2000) The Evolution of Probability Functions in an Inelasticly Deforming Two-Phase Medium, International Journal of Solids and Structures, 37, pp.423∼434. https://doi.org/10.1016/S0020-7683(99)00013-X
  10. Lu, B., Torquato, S. (1992) Lineal-Path Function for Random Heterogeneous Materials, Physical Review A, 45, pp.922∼929. https://doi.org/10.1103/PhysRevA.45.922
  11. Marin, E.B., Dawson, P.R. (1998) On Modelling the Elasto-Viscoplastic Response of Metals using Polycrystal Plasticity, Computer Methods in Applied Mechanics and Engineering, 165, pp.1∼121. https://doi.org/10.1016/S0045-7825(98)00034-6
  12. Rozman, M.G., Utz, M. (2001) Efficient Reconstruction of Multiphase Morphologies from Correlation Functions, Physical Review E, 63, 66701. https://doi.org/10.1103/PhysRevE.63.066701
  13. Tewari, A., Gokhale, A.M., Spowart, J.E., Miracle, D.B. (2004) Quantitative Characterization of Spatial Clustering in Three-Dimensional Microstructures using Two-Point Correlation Functions, Acta Materialia, 52, pp.307∼319. https://doi.org/10.1016/j.actamat.2003.09.016
  14. Torquato, S. (2002) Random Heterogeneous Materials, Springer, New York, p.701.
  15. Underwood, E. (1970) Quantitative Stereology, Addison-Wesley, Massachusetts, p.274.
  16. Yeong, C.L.Y., Torquato, S. (1998) Reconstructing Random Media, Physical Review E, 57, pp.495∼ 506. https://doi.org/10.1103/PhysRevE.57.495