Analysis of Reinforced Concrete Panel subjected to Blast Load using Parallel and Domain Decomposition

병렬과 영역분할을 이용한 폭발하중을 받는 철근콘크리트패널의 해석

  • 박재원 (한양대학교 건설환경공학과) ;
  • 윤성환 (한양대학교 건설환경공학과) ;
  • 박대효 (한양대학교 건설환경공학과)
  • Received : 2011.06.20
  • Accepted : 2011.07.26
  • Published : 2011.08.31

Abstract

Damage of reinforced concrete panel subjected to blast load using parallel and domain decomposition is analyzed. The numerical results are sensitive to the mesh size because blast waves are generated during the extremely short term. In order to investigate the effect of mesh size on the blast wave, the analysis results from various wave mesh size using AUTODYN, the explicit finite element analysis program, were compared with existing experimental results. The smaller mesh size was, the higher accuracy was. However, in this case, the analysis was inefficient. Therefore, in order to increase numerical efficiency, the parallel analysis using decomposed method based on Euler and Lagrangian description was performed. Finally, the decomposed method using both the structure domain based on Lagrange description and the blast wave domain based on Euler description was more efficient than the decomposed method using only the Lagrange mesh on structure domain.

병렬과 영역분할을 이용한 폭발하중을 받는 철근콘크리트패널의 손상을 분석하였다. 폭풍파는 극도로 짧은시간 동안에 발생되기 때문에 수치해석을 통한 결과값은 폭풍파의 메쉬크기에 영향을 받는다. 그러므로 폭풍파 메쉬크기의 영향을 분석하기 위해 explicit 유한요소해석 프로그램인 AUTODYN을 이용하여 기존 실험결과와 메쉬크기에 따른 해석결과가 비교되었다. 폭발해석결과 메쉬크기가 작을수록 정확도가 높았으나 수행시간이 증가하여 효율성이 떨어졌다. 추가로 수치해석의 효율성을 높이기 위해 영역별 Euler와 Lagrange 기법을 달리하는 병렬해석이 수행되었다. 결과로, 폭풍파영역에서는 영역분할된 Euler 메쉬를 사용하고 구조물영역에서는 영역 분할된 Lagrange 메쉬를 사용하는 것이 구조물영역에서 영역 분할된 Lagrange 메쉬만을 사용한 것보다 수치효율성이 가장 높았다.

Keywords

References

  1. 윤성환, 박대효 (2010) 폭풍파 및 파편 충돌에 대한 강판보강 콘크리트 패널의 복합적 수치해석, 대한토목학회 논문집, 31(1A), pp.25-33.
  2. 이경재, 탁문호, 강윤식, 박대효 (2010) 영역 분할기법을 이용한 포화 다공질매체의 혼합유한요소해석, 한국전산구조공학회 논문집, 23(4), pp.369-378.
  3. ANSYS, Inc. (2008) AUTODYN Parallel Processing Tutorial, Version 12.1.
  4. Bulson, P.S. (1997) Explosive Loading of Engineering Structures, E&FNSPON.
  5. Century Dynamics (2007) AUTODYN User Manual, Version 11.
  6. Johnson, G.R., Cook, W.H. (1983) A Constitutive Modeling and Data for Metals Subjected to Large Strain Rates and High Temperatures, Proceedings of 7th International Symposium on Ballistics, pp.541-577.
  7. Luccioni, B., Ambrosini, D., Danesi, R. (2006) Blast Load Assessment using Hydrocodes, Engineering Structures, 28(12), pp.1736-1744. https://doi.org/10.1016/j.engstruct.2006.02.016
  8. Ngo, T., Mendis, P., Gupta, A., Ramsay, J. (2007) Blast Loading and Blast Effects on Structures-An Overview, EJSE Special Issue: Loading on Structures, pp.76-91.
  9. Quan, X., Binbaum, N.K. Covler, M.S., Gerber, B.I., Clegg, R.A., Hayhurst, C.J. (2003) Numerical Simulation of Structure Deformation under Shock and Impact Loads using a Coupled Multi-Solver approach, 5th Asia-Pacific Conference on Shock and Impact Load on Structures, China.
  10. Razaqpur, A.G., Ahmed Tolba, Ettore Contestabile (2007) Blast Loading Response of Reinforced Concrete Panels Reinforced with Externally Bonded GFRP Laminates, Composites Part B: Engineering, 38(5/6), pp.535-546. https://doi.org/10.1016/j.compositesb.2006.06.016
  11. Riedel, W., Thoma, K., Hiermaier, S. (1999) Numerical Analysis using a New Macroscopic Concrete Model for Hydrocodes, Proceedings of 9th International Symposium on Interaction of the Effets of Munitions with Structures, pp.315-322.
  12. Smith, P.D., Hetherington, J.G. (1994) Blast and Ballistic Loading of Structures, Butterworth-Heinemann, Oxford.
  13. TM5-1300/AFM 88-22/NAVFAC P-397 (1990) Structures to Resist the Effect of Accidental Explosions, Joint Departments of the Army, Air Force and Navy Washington, DC.
  14. Tolba, A. (2001) Response of FRP-Retrofitted Reinforced Concrete Panels to Blast Loading, PhD thesis, Carleton University, Ottawa, Canada.
  15. Yanchao Shi, Zhongxian Li, Hong Hao. (2008) Mesh Size Effect in Numerical Simulation of Balst Wave Propagation and Interaction with Structures, Transactions of Tianjin University, 14(6), pp.396-402. https://doi.org/10.1007/s12209-008-0068-9