A Study on Fire Characteristics of Solid Combustible Materials Based on Real Scale Fire Test

실규모 실험에 의한 고체가연물의 화재특성 연구

  • Received : 2011.07.13
  • Accepted : 2011.10.07
  • Published : 2011.10.31

Abstract

A series of fire tests involving realistic solid combustible materials was conducted to quantify the heat release rate and investigate the fire growth characteristics during the initial fire growth stage. For these tests, single/double wood cribs, urethane cushion having polypropylene covers and wood crib on nylon carpet with urethane carpet padding were used as a fuel source. The fire growth coefficient of the solid combustible materials was quantified and the fire growth characteristics were compared with the $t^2$ fire scenario. The mean effective heat of combustion was evaluated by the total mass loss of fuel and total energy release concept and examined the effect of the ventilation and fire condition. The present study provides the practical information on the fire growth characteristics of solid combustible material to design to a set of fire scenarios for the fire risk analysis.

본 연구는 고체가연물의 초기 점화 및 화재성장과정에서의 발열량을 정량적으로 측정하고 가연물에 따른 화재성장특성 파악하고자 한다. 실험에 적용된 고체가연물은 단일/이중 목재크립, 단일/이중 쿠션, 카페트/목재크립이며 화재발달 단계에서 화재성장특성을 시간 제곱 화재성장 시나리오와 비교분석하고 고체가 연물의 화재성장 계수를 정량화 하였다. 고체가연물의 연소과정에서 소모되는 연료의 질량과 방출되는 총열에너지 개념을 이용하여 가연물의 평균 유효연소율을 평가하였으며 환기 및 화재조건의 영향을 분석하여 화재해석시 화재시나리오를 설정하는데 있어서 실질적인 정보를 제공하고자 한다.

Keywords

References

  1. M. Janssens, "CH. 2, Calorimetry", SFPE Handbook of Fire Protection Engineering, 3rd Ed., NFPA, Quincy, Massachusetts(2002).
  2. W.K. Chow, "Design Fire in Performance based Fire Safety Design for Green and Sustainable Buildings", The 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland (2006).
  3. T. Tanaka, "Integration of Fire Risk Concept into Performance-Based Evacuation Safety Design of Buildings", 10th IAFSS Symposium, Maryaldn, USA(2011).
  4. 최병일, 한용식, 김명배, "산소소모법을 이용한 주택 가연물 발열량 측정", 한국화재소방학회 논문지, Vol. 22, No.2, pp.104-107(2008).
  5. NFPA 72, "National Fire Alarm Code", 1999 Ed., NFPA, Quincy, Massachusetts(1999).
  6. R.A. Bryant, T.J. Ohlemiller, E.R. Johnsson, A.Hamins, B.S. Grove, G.W. Guthrie, A. Maranghides, and G.W. Muholland, "The NIST 3MW Quantitative Heat Release Rate Facility - Description and Procedures", NISTIR 7052(2004).
  7. M. Bundy, A. Maranghides, R. Johnsson, S.C. Kim, and L. DeLauter, "Heat Release Uncertainty in the NIST Large Fire Laboratory", NIST Annual Fire Conference(2007).
  8. S.W. Stiefel, R.W. Bukowski, J.R. Hall Jr., and F.B. Clarke, "Fire Risk Assessment Method: Case Study 2, Carpet in Offices", NISTIR 90-4244(1990).
  9. D. Drysdale, "An Introduction to Fire Dynamcis", A Wiley-Interscience Publication(1985).
  10. J.G. Quintiere, "Principle of Fire Behavior", Delmar Publishers(1997).