Active 3D Shape Acquisition on a Smartphone

스마트폰에서의 능동적 3차원 형상 취득 기법

  • Won, Jae-Hyun (School of Information and Communication Engineering, Inha University) ;
  • Yoo, Jin-Woo (School of Information and Communication Engineering, Inha University) ;
  • Park, In-Kyu (School of Information and Communication Engineering, Inha University)
  • 원재현 (인하대학교 정보통신공학부) ;
  • 유진우 (인하대학교 정보통신공학부) ;
  • 박인규 (인하대학교 정보통신공학부)
  • Received : 2011.09.08
  • Published : 2011.11.25

Abstract

In this paper, we propose an active 3D shape acquisition method based on photometric stereo using camera and flash on a smartphone. Two smartphones are used as the master and slave, in which the slave projects illumination from different locations while the master captures the images and processes photometric stereo algorithm to reconstruct 3D shape. In order to reduce the error, the smartphone's camera is calibrated to overcome the effect of the lens distortion and nonlinear camera sensor response. We apply 5-point algorithm to estimate the pose between smartphone cameras and then estimate lighting direction vector to run the photometric stereo algorithm. Experimental result shows that the proposed system enables us to use smartphone as a 3D camera with low cost and high quality.

본 논문에서는 스마트폰 단말기에 장착되어있는 카메라와 플래시를 이용한 photometric stereo 기반의 능동적 3차원 형상 취득 기법을 제안한다. 조명의 위치 변화에 따라 여러 장의 입력 영상을 취득하기 위헤 고정된 위치에서 영상을 취득하는 스마트폰 한 대와 위치를 변화시키며 조명을 투사하는 스마트폰 한 대를 이용하여 시스템을 구성한다. 우선 카메라 렌즈의 왜곡과 카메라 센서의 비선형성 반응함수에 의한 3차원 형상 취득의 오차를 줄이기 위해 카메라 보정을 수행한다. 또한 스마트폰 카메라간의 자세를 추정하기 위해 5-point 알고리즘을 적용한 후 이를 이용하여 광원의 방향 벡터를 추정한다. 그 후 취득된 영상과 추정된 광원의 방향 벡터를 이용하여 photometric stereo기법으로 3차원 형상을 취득한다. 실험결과 본 논문에서 제안하는 기법을 통하여 스마트폰이 저비용 고품질의 소형화된 3차원 카메라의 역할을 수행할 수 있는 것을 확인할 수 있다.

Keywords

References

  1. W. Lee, K. Kim, and W. Woo, "Mobile phone-based 3D modeling framework for instant interation," Proc. IEEE international Workshop on 3D Digital Imaging and Modeling, pp.1755-1782, October 2009.
  2. T. Higo, Y. Matsushita, N. Joshi, and K. Ikeuchi, "A hand-held photometric stereo camera for 3D modeling," Proc. IEEE International Conference on Computer Vision, pp.1234-1241, September 2009.
  3. R. J. Woodham, "Photometric method for determining surface orientation from multiple images," Optical Engineering, vol. 19, no. 1, pp. 139-144, February 1980.
  4. C. Hernandez, G. Vogiatzis, and R. Cipolla, "Multiview photometric stereo," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 548-554, March 2008. https://doi.org/10.1109/TPAMI.2007.70820
  5. J. Y. Bouguet, Camera calibration toolbox for Matlab, http://www.vision.caltech.edu/bouguetj/ calib_doc/.
  6. A. Livinov and Y. Y. Schechner, "Addressing radiometric nonidealities: A unified framework," Proc. IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 66-59, June 2005.
  7. M. A. Robertson, S. Borman, and L. Stevenson, "Dynamic range improvement through multiple exposures," Proc. IEEE International Conference on Image Processing, vol. 3, pp. 159-163, October 1999.
  8. H. bay, A. Ess, T. Tuytelaars, and L. V. Gool, "SURF: Speeded up roburst features," Computer Vision and Image Understanding, vol. 110, no. 3, pp.346-359, June 2008. https://doi.org/10.1016/j.cviu.2007.09.014
  9. M. fischler, R. Bollers, "Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography," Communications of the ACM, vol. 24, pp. 381-395, June 1981. https://doi.org/10.1145/358669.358692
  10. D. Nister, "An efficient solution to the five-point relative pose problem," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 26, pp. 756-770, June 2004. https://doi.org/10.1109/TPAMI.2004.17
  11. C. Rother, V. Kolmogorov, and A. Blake, "GrabCut: Interactive foreground extraction using iterated graph cuts," ACM Trans. on Graphics, vol. 23, pp. 309-314, August 2004. https://doi.org/10.1145/1015706.1015720
  12. L. C. Evans, Partial Differential Equations, American Mathematical Society, 1998.
  13. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Third Edition, Cambridge University Press, 2007.