Antibacterial and Antioxidative Activity of Lespedeza cuneata G. Don Extracts

비수리 추출물의 항균 및 항산화 활성

  • Lee, Hye-Jin (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology and Science) ;
  • Lim, Gyu-Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology and Science) ;
  • Park, Min-A (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology and Science) ;
  • Park, Soo-Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology and Science)
  • 이혜진 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 임규남 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 박민아 (서울과학기술대학교 자연생명과학대학 정밀화학과) ;
  • 박수남 (서울과학기술대학교 자연생명과학대학 정밀화학과)
  • Received : 2010.12.10
  • Accepted : 2011.01.24
  • Published : 2011.03.28

Abstract

In this study, the antibacterial activity and the antioxidative effects, inhibitory effects on tyrosinase of Lespedeza cuneata G. Don extracts were investigated. MIC value of ethyl acetate fraction from L. cuneata G. Don on P. ovale (0.125%) showed that the antibacterial activity of the ethyl acetate fraction was higher than methyl paraben. The aglycone fraction of L. cuneata G. Don (14.63 ${\mu}g$/mL) showed the most prominent the free radical (1,1-diphenyl-2-picryl-hydrazyl, DPPH) scavenging activity ($FSC_{50}$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of L. cuneata G. Don fraction on $Fe^{3+}$-EDTA/$H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The aglycone fraction of L. cuneata G. Don (0.07 ${\mu}g$/mL) showed the most prominent ROS scavenging activity. The protective effects of extract/fractions of L. cuneata G. Don on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The L. cuneata G. Don extracts suppressed photohemolysis in a concentration dependent manner (1 ~ 50 ${\mu}g$/mL). The inhibitory effects ($IC_{50}$) of L. cuneata G. Don extracts on tyrosinase were determined with ethyl acetate fraction (104.83 ${\mu}g$/mL) and aglycone fraction (27.55 ${\mu}g$/mL) of L. cuneata G. Don extract. These results indicate that L. cuneata G. Don extract/fractions can function as high potential as bactericide against the pathogenic bacteria and antioxidant in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS. Extract/fractions of L. cuneata G. Don could be applicable to new functional cosmetics for antiaging, antioxidant, and antibacterial activity.

본 연구에서는 비수리 추출물의 피부 상재균에 대한 항균 작용과 항산화 활성, tyrosinase 저해 효과 등에 관한 조사를 수행하였다. 피부 상재균에 대한 항균활성 측정결과, P. ovale에 대한 ethyl acetate 분획의 MIC는 0.125%로 나타났으며, 이는 methyl paraben보다 큰 항균활성을 나타내었다. 추출물의 free radical(1,1-diphenyl-2-picrylhydrazyl, DPPH) 소거활성($FSC_{50}$)은 aglycone 분획(14.63 ${\mu}g$/mL)에서 가장 큰 활성을 나타내었고, 또한 Luminol-의존성 화학발광법을 이용한 $Fe^{3+}$-EDTA/$H_2O_2$ 계에서 생성된 활성산소종(reactive oxygen species, ROS)에 대한 비수리 추출물의 총항산화능은 aglycone 분획(0.07 ${\mu}g$/mL)에서 가장 큰 활성을 나타내었다. 비수리 추출물에 대하여 rose-bengal로 증감된 사람 적혈구의 광용혈에 대한 억제 효과를 측정하였고, 농도 의존적(1 ~ 50 ${\mu}g$/mL)으로 세포보호 효과를 나타내었다. Tyrosinase의 활성 저해 효과($IC_{50}$)는 비수리 추출물의 ethyl acetate 분획과 aglycone 분획이 각각 104.83 ${\mu}g$/mL, 27.55 ${\mu}g$/mL으로 나타났다. 이상의 결과들은 비수리 추출물이 $^1O_2$ 혹은 다른 ROS를 소광시키거나 소거하고, ROS에 대항하여 세포막을 보호함으로써 생체계, 특히 태양 자외선에 노출된 피부에서 항산화제로서 작용할 수 있음을 시사한다. 또한 tyrosinase 저해활성과 피부 상재균에 대한 항균작용으로부터 항산화, 항노화 및 항균성 화장품 소재로서의 응용 가능성을 확인하였다.

Keywords

References

  1. Baba, T., F. Takeuchi, M. Kuroda, H. Yuzawa, K. Aoki, A. Oguchi, Y. Nagai, N. Iwama, K. Asano, T. Naimi, H. Kuroda, L. Cui, K. Yamamoto, and K. Hiramatsu. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. THE LANCET. 359: 1819- 1827. https://doi.org/10.1016/S0140-6736(02)08713-5
  2. Branen, A. L. 1975. Toxicology and biochemistry of butylated hydroxy anisole and bytylated hydoxytoluane. J.Oil Chem. Soc. 52: 59-62. https://doi.org/10.1007/BF02901825
  3. Coenye, T., E. Peeters, and H. J. Nelis. 2007. Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors. Res. Microbiol. 158: 386-392. https://doi.org/10.1016/j.resmic.2007.02.001
  4. Davies, K. J. A. 1987. Protein damage and degradation by oxygen radical. J. Biol. Chem. 262: 9895-9901.
  5. Dawson, P., I. Han, M. Cox, C. Black, and L. Simmons. 2006. Resident time and food contact time effects on transfer of Salmonella Typhimurium from tile, wood and carpet: Testing the five second rule. J. Appl. Microbiol. 102(4): 1364-5072.
  6. Diekema, D. J., M. A. Pfaller, F. J. Schmitz, J. Smayevsky, J. Bell, R. N. Jones, M. Beach, and the SENTRY Participants Group. 2001. Survey of Infections Due to Staphylococcus Species: Frequency of Occurrence and Antimicrobial Susceptibility of Isolates Collected in the United States, Canada, Latin America, Europe, and the Western Pacific Region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. CID. 32(2): S114-132. https://doi.org/10.1086/320184
  7. Ding, J. L., I. J. Lim, H. D. Lee, and W. S. Cha. 2006. Analysis of minerals, amino acids and vitamin of Lespedeza cuneata. Korean J. Biotechnol. Bioeng. 21(6): 414-417.
  8. Fantone, J. C. and P. A. Ward. 1982. Role of oxygen-derived free radicals and metabolites in leukocyte dependent inflammatory reaction. Ann. J. Path. 107: 397.
  9. Garcia-Lara, J., M. Masalha, and S. J. Foster. 2005. Staphylococcus aureus: the search for novel target. DDT. 10(9): 643-651. https://doi.org/10.1016/S1359-6446(05)03432-X
  10. Ha, Y. M., B. B. Lee, H. J. Bae, K. M. Je, S. R. Kim, J. S. Choi, and I. S. Choi. 2009. Anti-microbial activity of grapefruit seed extract and processed sulfur solution against human skin pathogens. J. Life Science. 19(1): 94-100. https://doi.org/10.5352/JLS.2009.19.1.094
  11. Inui, S., MD, PhD, H. Aoshima, A. Nishiyama, and S. Itami, MD, PhD. 2010. Improvement of acne vulgaris by topical fullerene application: unique impact on skin care. Nanomedicine: NBM.
  12. Jung, S. J., J. H. Lee, H. N. Song, N. S. Seong, S. E. Lee, and N. I. Baek. 2004. Screening for antioxidant activity of plant medicinal extracts. J. Korean Soc. Appl. Biol. Chem. 47(1): 135-140.
  13. Kim, S. J. and D. W. Kim. 2007. Antioxidative activity of hot water and ethanol extracts of Lespedeza cuneata seeds. Korean J. Food Preserv. 14(3): 332-335.
  14. Kim, Y. H. and S. N. Ryu. 2008. Antioxidant activity of mathanol extract from aerial parts in Lespedeza cuneata G. Don. Korean J. Crop Sci. 53(S): 121-123.
  15. Kwon, D. J., J. K. Kim, Y. H. Ham, and Y. S. Bae. 2007. Flavone glycosides from the aerial parts of Lespeseza cuneata G. Don. J. Korean Soc. Appl. Biol. Chem. 50(4): 344-347.
  16. Leyden, J. 2003. A review of the use of combination therapies for the treatment of acne vulgaris. J. Am. Acad. Dermatol. 49(3): S200-210. https://doi.org/10.1067/S0190-9622(03)01154-X
  17. Masaki, H., S. Sakaki, T. Atsumi, and H. Sakurai. 1995. Activeoxygen scavenging activity of plants extracts. Biol. Pharm. Bull. 18: 162-166. https://doi.org/10.1248/bpb.18.162
  18. Park, S. N. 2003. Skin aging and antioxidants. J. Soc. Cosmet. Scientists Korea. 29(1): 75-77.
  19. Rahimuddin, S. A., S. M. Khoja, M. M. Zuhair, N. K. Howell, and J. E. Brown. 2007. Inhibition of lipid peroxidation in UVA-treated skin fibroblasts by luteolin and its glucosides. Eur. J. Lipid Sci. Technol. 109: 647-655. https://doi.org/10.1002/ejlt.200700012
  20. Roverts, S. B. 1969. Pityrosporum orbiculare incidence and distribution in clinically normal skin. Br. J. Dermatol. 81: 264-269. https://doi.org/10.1111/j.1365-2133.1969.tb13978.x
  21. Schmidt, A. 1997. Malassezia furfur : A fungus belonging to the physiological skin flora and its relevance in skin disorders. Cutis. 59: 21-24.
  22. Seo, K. H., K. H. Shin, M. S. Shin, J. I. Kim, and S. H. Seo. 1998. Skin Disk Diffusion Method(SDDM) as an Effective in vitro method for measurement of Anti-dandruff activity. J. Soc. Cosmet. Scientists Korea. 24(1): 100-112.
  23. Sokmen, M., M. Angelova, E. Krumova, S. Pashova, S. Ivancheva, A. Sokmen, and J. Serkedjieva. 2005. In vitro antimicrobial and anti-inflammatory effects of herbs against Propionibacterium acnes. Life Sciences. 76: 2981-2993. https://doi.org/10.1016/j.lfs.2004.11.020
  24. Taulo, S., A. Wetlesen, R. K. Abrahamsen, J. A. Narvhus, and R. Mkakosya. 2009. Quantification and variability of Escherichia coli and Staphylococcus aureus cross-contamination during serving and consumption of cooked thick porridge in Lungwena rural households, Malawi. Food Control. 20: 1158-1166. https://doi.org/10.1016/j.foodcont.2009.03.009
  25. Zhoh, C. K., B. N. Kim, S. H. Hong, and C. G. Han, 2002. The antimicrobial effects of natural aromas for substitution of parabens. J. Soc. Cosmet. Scientists Korea. 28(1): 166- 185.