The Use of Aureobasidin A Resistant Gene as the Dominant Selectable Marker for the Selection of Industrial Yeast Hybrid

산업용 효모 Hybrid의 선별을 위한 우성선별표지로서의 Aureobasidin A 내성유전자의 이용

  • Jeon, Han-Taek (Department of Bioscience and Biotechnology, The University of Suwon) ;
  • Park, Uhn-Mee (Department of Bioscience and Biotechnology, The University of Suwon) ;
  • Kim, Keun (Department of Bioscience and Biotechnology, The University of Suwon)
  • 전한택 (수원대학교 생명공학과) ;
  • 박은미 (수원대학교 생명공학과) ;
  • 김근 (수원대학교 생명공학과)
  • Received : 2011.04.06
  • Accepted : 2011.04.22
  • Published : 2011.06.28

Abstract

For the strain improvement of the industrial polyploid yeast strain through hybridization and protoplast fusion, a dominant selection marker other than a recessive marker such as the auxotrophic marker was required for the selection of the resulting hybrids. In the present investigation, the aureobasidin A resistant gene was tested in relation to whether it can be used as the dominant selectable marker for the isolation of hybrids of the yeast Saccharomyces. The plasmid pAUR112, carrying the gene responsible for resistance to aureobasidin A, was introduced into the haploid yeast strain K114/YIp. From the rare-mating between polyploid C6 and haploid K114/YIp carrying pAUR112, many hybrids were obtained from the agar medium containing 0.5 ${\mu}g$/ml of aureobasidin A. The hybrids exhibited characteristics derived from both of the parental strains; and the cell sizes of the hybrids were larger than those of the parental strains. These results showed that the aureobasidin A resistant gene could be successfully used as the dominant selectable marker for the isolation of yeast hybrids resulting from rare-mating.

교배와 원형질체 융합을 통한 배수체인 야생형 산업균주의 개발을 위하여, hybrid의 선별표지로서 우성의 선별표지인 aureobasidin A 내성이 사용될 수 있는 지를 알아보고자 하였다. 선별배지에서 aureobasidin A의 최적농도는 야생형 균주인 경우 SD와 YPD 배지에서는 0.5 ${\mu}g$/mL 이상이었고, SG와 YPG에서는 0.2-0.3 ${\mu}g$/mL 이었다. 한편 호흡결여돌연변이주는 야생형 균주보다 훨씬 높은 농도의 aureobasidin A에도 내성이 있음을 나타내었다. 우리는 K114/YIP균주의 전분분해 능력이 배수체 야생형 산업 균주에 전달 될 수 있는지를 이 방법을 통하여 관찰하였다. 반수체 영양요구성 균주 K114/YIP에 aureobasidin에 대한 내성을 부여하는 pAUR112가 도입된 균주와 야생형 균주 KL 혹은 C6와의 rare-mating 후 aureobasidin A 함유 배지에서 성장한 hybrid를 분리할 수 있었다. Hybrid는 전분분해 능력을 함유하고 있었을 뿐 아니라 두 양친의 특성을 동시에 지녔으며, 전자현미경 관찰 결과에서도 hybrid는 양친주의 특성을 모두 갖는 것으로 나타났다.

Keywords

References

  1. Aeed, P. A., L. Y. Casey, M. M. Nagiec, and A. P. Elhammer. 2009. Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin. Antimicrob Agents Chemother. 53: 496-504. https://doi.org/10.1128/AAC.00633-08
  2. Cerantola, V., I. Guillas, C. Roubalty, C. Vionet, D. Uldry, J. Krundsen, and A. Conzelmann. 2009. Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inisitolphosphorylceramides. Molecular Microbiology 71: 1523-1537. https://doi.org/10.1111/j.1365-2958.2009.06628.x
  3. Cerbon, J., A. Falcon, A., C. Hernandez-Luna, and D. Segura- Cobos. 2005. Inositol phosphoceramide synthase is a regulator of intracellular levels of diacylglycerol and ceramide during the G1 to S transition in Saccharomyces cerevisiae. Biochem J. 15; 388: 169-176.
  4. Cook, J. R., S. L. Emanuel, and S. Pestka. 1993. Yeast artificial chromosome fragmentation vectors that utilize URA3 selection. Genet. Anal. Tech. Appl. 10: 109-112. https://doi.org/10.1016/1050-3862(93)90033-F
  5. Cowart, L. A. and L. M. Obeid. 2007. Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta. 1771: 421-431. https://doi.org/10.1016/j.bbalip.2006.08.005
  6. Dujon, B., D. Alexandraki, B. Andre, and W. Ansorge. 1994. Complete DNA sequence of yeast chromosome XI. Nature 369: 371-378. https://doi.org/10.1038/369371a0
  7. Endo, M., K. Takesako, I. Kato, and H. Yamaguchi. 1997. Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob. Agents. Chemother. 41: 672-676.
  8. Hashida-Okado, T., A. Ogawa, R. Yasumoto, K. Takesako, and I. Kato. 1996. AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae : a study of defective morphologies in Aur1p-depleted cells. Mol. Gen. Genet. 251: 236-244.
  9. Heidler, S. A. and J. A. Radding. 1995. The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to antifungal agent aureobasidin A (LY295337). Antimicrob. Agents Chemother. 39: 2765-2769. https://doi.org/10.1128/AAC.39.12.2765
  10. Ikai, K., K. Takesako, K. Shiomi, M. Moriguchi, Y. Umeda, J. Yamamoto, I. Kato, and H. Naganawa. 1991. Structure of aureobasidin A. J. Antibiot. 44: 925-933. https://doi.org/10.7164/antibiotics.44.925
  11. Ito, M., K. Murata, and A. Kimura. 1984. Transformation of intact yeast cells treated with alkali cations or thiol compounds. Agric. Biol. Chem. 48: 341-347. https://doi.org/10.1271/bbb1961.48.341
  12. Jesch, S. A., M. L. Gaspar, C. J. Stefan, M. A. Aregullin, and S. A. Henry. 2010. Interruption of inositol sphingolipid synthesis triggers Stt4p-dependent protein kinase C signaling. J. Biol. Chem. 285: 41947-41960. https://doi.org/10.1074/jbc.M110.188607
  13. Kim, T. and K. Kim. 1996. The construction of a stable starch-fermenting yeast strain using genetic engineering and rare-mating. Appli. Biochemistry and Biotechnology. 59: 39- 51. https://doi.org/10.1007/BF02787856
  14. Kreger-van Rij, N. J. W. 1984. The yeasts a taxonomic study, Third revised and enlarged edition, Elsevier Scince Publishers B. V.
  15. Rose, M., P. Grisafi, and D. Botstein. 1984. Structure and function of the yeast URA3 gene : expression in Escherichia coli. Gene. 29: 113-124. https://doi.org/10.1016/0378-1119(84)90172-0
  16. Saigal, D. 1993. Review article : Yeast strain development for ethanol production. Ind. J. Microbiol. 33: 159-168.
  17. Sherman, F., G. Fink, and J. B. Hicks. 1986. Methods in Yeast Genetics, Laboratory Course Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
  18. Spencer, J. F. T., C. Bizeau, N. Reynolds, and D. M. Spencer. 1985. The use of mitochondrial mutant in hybridization of industrial yeast strains. Curr. Genet. 9: 649-652. https://doi.org/10.1007/BF00449817
  19. Spencer, J. F. T. and D. M. Spencer. 1983. Genetic improvement of industrial yeasts. Ann. Rev. Microbiol. 37: 121-142. https://doi.org/10.1146/annurev.mi.37.100183.001005
  20. Takesako, K., H. Kuroda, T. Inoue, F. Haruna, Y. Yoshikawa, I. Kato, K. Uchida, T. Hiratani, and H. Yamaguchi. 1993. Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J. Antibiot. 46: 1414-1427. https://doi.org/10.7164/antibiotics.46.1414