DOI QR코드

DOI QR Code

An Estimation of the Excavation Damaged Zone at the KAERI Underground Research Tunnel

한국원자력연구원 내 지하연구시설에서의 굴착손상영역 평가

  • 이창수 (서울대학교 에너지시스템공학부) ;
  • 권상기 (인하대학교 에너지자원공학과) ;
  • 최종원 (한국원자력연구원) ;
  • 전석원 (서울대학교 에너지시스템공학부)
  • Received : 2011.09.27
  • Accepted : 2011.10.17
  • Published : 2011.10.31

Abstract

In this study, physical, mechanical, and thermal properties of rock samples were investigated to estimate the Excavation Damaged Zone (EDZ) developed during the construction of the KAERI Underground Research Tunnel. The average porosity in the EDZ was increased by about 140%. The average wave velocity, Young's modulus, and uniaxial compressive strength in the EDZ were decreased by about 11, 37, and 16%, respectively. And the thermal conductivity in the EDZ was decreased by about 20%. From the laboratory tests, the EDZ size could be estimated to be around 1.1-2.4 m.

본 연구에서는 굴착 전 후에 채취한 암석시료들에 대해 물리적, 역학적 그리고 열적 물성을 조사하여, KAERI Underground Research Tunnel(KURT)의 건설로 인해 발생된 굴착손상영역(EDZ)을 정량적으로 평가하고자 하였다. 굴착손상영역에서 공극률은 약 140% 정도 증가하였고, 탄성파속도, 탄성계수, 그리고 일축압축강도는 각각 약 11, 37, 그리고 16% 정도 감소하였다. 또한 굴착손상영역에서의 열전도도는 약 20% 정도 감소하였다. 암석물성변화를 이용하여 KURT 굴착손상영역의 범위를 판단한 결과 약 1.1-2.4 m로 나타났다.

Keywords

References

  1. 조원진, 박정화, 권상기, 2004, 소규모 지하처분연구시설 기본설계, KAERI/TR-2769/2004.
  2. Autio, J., 1996, Characterization of the excavation disturbance caused by boring of the experimental full scale deposition holes in the research tunnel at Olkilouto. Posiva-96-09, Posiva, Helsinki.
  3. Autio, J., T. Hjerpe, M. Siitai-Kauppi, 2005, Porosity, diffusivity and permeability of EDZ in crystaline rock and effect on the migration in a KBS-3 type repository. In EU, 2005. Impact of excavation distubed or damaged zone (EDZ) on the performance of radioactive waste geological repositories. Proc. European Commission Cluster Conference and Workshop. pp. 149-155.
  4. Autio, J., P. Gribi, L. Johnson, P. Marschall, 2006, Effect of excavation damaged zone on gas migration in a KBS- 3H type repository at Olkilouto. Physics and Chemistry of the earth Vol. 31, pp. 649-653. https://doi.org/10.1016/j.pce.2006.04.016
  5. Backblom, G., 2008, Excavation damaged and disturbance in crystalline rock - Results from experiments and analyses. SKB Technical report TR 08-08, Svensk Kärnbränslehantering AB, Stockholm.
  6. Backblom, G., C. D. Martin, 1999, Recent experiments in hard rocks to study the excavation response: Implications for the performance of a nuclear waste geological repository. Tunnelling and Underground Space Technology. Vol. 14, No. 3, pp. 377-394. https://doi.org/10.1016/S0886-7798(99)00053-X
  7. Borgesson, L., R. Pusch, A. Fredricksson, H. Hokmark, O. Karnland, R. Sanden, 1992, Final report of zones disturbed by blasting and stress release. Stripa Project 92-08, Svensk Karnbranslehantering AB, Stockholm.
  8. Bossart, P., P. M. Meier, A. Moeri, T. Tric, J. Mayor, 2002, Geological and hydraulic characterisation of the excavation disturbed zone in Opalinus Clay of the Mont Terri Rock Laboratory. Eng. Geol. Vol. 66, pp. 19-38. https://doi.org/10.1016/S0013-7952(01)00140-5
  9. Bossart, P., T. Tric, P. M. Meier, J. Mayor, 2004, Structural and hydrogeological characterisation of the excavation-disturbed zone in the Opalinus Clay (Mont Terri Project, Switzerland). Applied Clay Science. Vol.26, pp. 429-448. https://doi.org/10.1016/j.clay.2003.12.018
  10. Brodsky, N. S., M. Riggins, J. Connolly, 1997, Thermal expansion, thermal conductivity, and heat capacity measurements at Yucca mountain, Nevada. Int. J. Rock Mech. Min. Sci. Vol. 34, No. 3-4, pp. 40.
  11. Carlson, S. R., R. P. Young, 1993, Acoustic emission and ultrasonic velocity study of excavation-induced microcrack damage at the underground research laboratory. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 30, No. 7, pp. 901-907. https://doi.org/10.1016/0148-9062(93)90042-C
  12. Chandler, N. A., E. T. Kozak, C. D. Martin, 1996, Connected pathways in the EDZ and the potential for flow along tunnels. In: Martino, J. B., Martin, C. D., (eds), 1996: Designing the Excavation Disturbed Zone for a nuclear repository in hard rock. Proc. Can. Nucl. Soc. Sep 20, 1996, Winnipeg, Canada, Canadian Nuclear Society, Toronto.
  13. Chandler, N. A., A. Cournut, D. A. Dixon, C. Fairhurst, F. Hansen, M. Gray, K. Hara, Y. Ishijima, E. Kozak, J. Martino, K. Matsumito, G. McCrank, Y. Sugita, P. Thompson, J. Tillerson, B. Vignal, 2002, The five-year report of the Tunnel Sealing Experiment: An interntional project of AECL, JNC, ANDRA and WIPP. Atomic Energy of Canada Limited Report AECL-12727. Chalk River, Canada.
  14. Cho, W. J., S. Kwon, J. W. Choi, 2009, The thermal conductivity for granite with various water contents. Eng. Geol. Vol. 107, pp. 167-171. https://doi.org/10.1016/j.enggeo.2009.05.012
  15. Emsley, S., O. Slsson, L. Seinberg, H. J. Alheid, S. Falls, 1997, ZEDEX - a study of damage and disturbance from tunnel excavation by blasting and tunnel boring. SKB Technical Report TR 97-30, Svensk Karnbranslehantering AB, Stockholm.
  16. Fairhurst, C., 1999, Rock mechanics and nuclear waste repositories, Proceedings of the International Workshop on the Rock Mechanics of Nuclear Waste Repositories, American Rock Mechanics Association. pp 1-44.
  17. Gray, M., 1993, OECD/NEA International Stripa Project 1980-1992. Overview III, Engineered Barriers. Svensk Karnbranslehantering AB, Stockholm.
  18. Horai, K., 1971, Thermal conductivity of rock-forming minerals. J. Geophys. Res. Vol. 76, pp. 1278-1308. https://doi.org/10.1029/JB076i005p01278
  19. Hou, Z., 2003, Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. Int. J. Rock Mech. Min. Sci. Vol. 40, NO. 5, pp. 725-738. https://doi.org/10.1016/S1365-1609(03)00064-9
  20. Jackson, R., J. S. O. Lau, A. Annor, 1989, Mechanical, thermomechanical, and joint properties of rock samples from the site of AECL's Underground Research Laboratory, Lac du Bonnet, Manitoba. Proceedings of the 42nd Canadian Geotechical Conferenrce on Materials. Winnipeg, pp. 41-49.
  21. Kamemura, K., K. Sugihara, 1993, In-situ tests and numerical analysis of excavation disturbed zone around a drift in Neogene sedimentary rock. In: Assessment and Prevention of Failure Phenimina in Rock Engineeing. Balkema, Rotterdam. pp. 301-307.
  22. Katsube, T. J., J. P. Hume, 1987, Geotechnical studies at Whiteshell Research Area (RA-3). Canada Centre for Mineral and Energy Technology, Mining Research Laboratories Divisional Report, MRL 87-52 (INT).
  23. Kukkonen, I., L. Kiverkas, S. Vuoriainen, M. Kaaria, 2011, Thermal properties of rocks in Olkiluoto: Results of laboratory measurements 1994-2010. Posiva Oy, Working Report 2011-77.
  24. Kwon, S., W. J. Cho, 2008, The influence of an excavation damaged zone on the thermal-mechanical and hydromechanical behaviors of an underground excavation. Eng. Geol. Vol. 101, pp. 110-123. https://doi.org/10.1016/j.enggeo.2008.04.004
  25. Kwon, S., C. S. Lee, S. J. Cho, S. W. Jeon, W. J. Cho, 2009, An investigation of the excavation damaged zone at the KAERI underground research tunnel. Tunnel and Underground Space Technology. Vol. 24, pp. 1-13. https://doi.org/10.1016/j.tust.2008.01.004
  26. Malmgren, L., D. Saiang, J. Toyra, A. Bodare, 2007, The excavation disturbed zone (EDZ) at Kiirunavaara mine. Eng. Geol. Vol. 61, pp. 1-15.
  27. Maqsood, A., I. H. Gul, M. A. Rehman, 2004, Thermal transport properties of granites in the temperature range 253-333K. J. Phys. D Appl. Phys. Vol. 37, pp. 1405-1409. https://doi.org/10.1088/0022-3727/37/9/016
  28. Marschall, P., E. Fein, H. Kull, G. W. Lanyon, L. Liedtke, H. Muller-Lyda, Shao, 1999, Conclusions of the Tunnel Near-Field Programme (CTN). Nagra Technical Report 99-07, Nagra, Wettingen, Switzerland.
  29. Martin, C. D., P. K. Kaiser, D. R. McCreath, 1999. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels, Canadian Geotechnical Journal, Vol. 36, No. 1. pp. 136-151. https://doi.org/10.1139/t98-072
  30. Martino, J. B., N. A. Chandler, 2004, Excavation-induced damage studies at the underground research laboratory. Int. J. Rock Mech. Min. Sci. Vol. 41, No. 8, pp.1413-1426. https://doi.org/10.1016/j.ijrmms.2004.09.010
  31. Matsui, H., T. Sato, K. Sugihara, T. Kikuchi, 1998, Overview of the EDE(Excavation Disturbance Experiment)- II at Kamaishi mine. Kamaishi Int. Workshop Proc. 24-25 Aug. 1998. PNCTN7413 98-023. JNC, Tokyo.
  32. Matsui, H., K. Sugihara, T. Sato, 2003, In-situ experiments on excavation disturbance in JNC's Geoscientific Research Programme. Impact of the excavation disturbed or damaged zone (EDZ) on the performence of radioactive waste geological repositories. Proceedings Euopean Commission CLUSTER Conference and Workshop on EDZ in Radiaactive Waste Geological Repositories. ENRESA.
  33. Mugler, C., M. Filippi, Ph. Montarnal, J. -M. Martinez, Y. Wileveau, 2006, Determination of the thermal conductivity of opalinus clay via simulation of experiments performed at the Mont Terri underground laboratory. Journal of Applied Geophysics. Vol. 58, pp. 112-129. https://doi.org/10.1016/j.jappgeo.2005.05.002
  34. Nagra, 2001, Sondierbohrung Benken-Untersuchungsbericht. Nagra Interal Repost NTB 00-01.
  35. Pusch, R., R. Stanfors, 1992, The zone of disturbance around blasted tunnels at depth. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 29, No. 5, pp. 447-456. https://doi.org/10.1016/0148-9062(92)92629-Q
  36. Read, R. S., C. D. Martin, 1996, Technical summary of AECL's Mine-By Experiment. Phase 1: Excavation Responses. AECL-11311, CoG-95-171. AECL, Pinawa, Canada.
  37. Rutqvist, J., J. Noorishad, C. -F. Tsang, 1999, Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi mine. SKI report. ISSN 1104-1374.
  38. Sato, T., T. Kikuchi, K. Sugihara, 2000, In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogene sedimentary rock at Tono mine, Central Japan. Eng. Geol. Vol. 56, pp. 97-108.
  39. Scharli, U., L. Rybach, 1984, On the thermal conductivity of low-porosity crystalline rocks. Tectonophysics. Vol.103, pp. 307-313. https://doi.org/10.1016/0040-1951(84)90092-1
  40. Simmons, G. R., P. Baumgartner, 1994, The disposal of Canada's nuclear fuel waste: engineering for a disposal facility. AECL Research. AECL-10715.
  41. SKB, 1999, SR 97 - Deep repository for spent nuclear fuel. SR 97 - Post-closure safety. Main report - Vol. I, Vol. II and Summary. SKB Technical Report TR-99-06. Svensk Karnbranslehantering AB, Stockholm.
  42. Stephansson, O., 1999, Rock mechanics and rock engineering of spent nuclear fuel and radioactive waste repositories in Sweden, Proceedings of the International Workshop on the Rock Mechanics of Nuclear Waste Repositories. America Rock Mechanics Association. pp. 205-227.
  43. Sugihara, K., H. Yoshioka, H. Matsui, T. Sato, 1993, Preliminary results of a study on the responses of sedimentary rocks to shaft excavation. Eng. Geol. Vol.35, pp. 223-228. https://doi.org/10.1016/0013-7952(93)90010-A
  44. Sundberg, J., G. Innova, 2003, Thermal properties at Aspo HRL, analysis of distribution and scale factors. SKB Report R-03-17, Svensk Karnbranslehantering AB, Stockholm.
  45. Sweet, J. N., J. E. McCreight, 1980, Thermal properties measurements on rocksalt samples from the site of the proposed waste isolation pilot. SAND80-0709, Sandia National Laboratory, Albuquerque, NM.
  46. Thomas, Jr. J., R. R. Frost, R. Robert, R. D. Harvey, 1973, Thermal conductivity of carbonate rocks. Eng. Geo. Vol. 7, No. 1, pp. 3-12. https://doi.org/10.1016/0013-7952(73)90003-3
  47. Tsang, C. -F., F. Bernier, C. Davies, 2005, Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays-in the context of radioactive waste disposal. Int. J. Rock Mech. Min. Sci. Vol. 42, No. 1, pp. 109-125. https://doi.org/10.1016/j.ijrmms.2004.08.003