DOI QR코드

DOI QR Code

Fabrication of $TiO_2$ Electrode Containing Scattering Particles in Dye-Sensitized Solar Cells

산란 입자를 포함하는 염료감응 태양전지용 $TiO_2$ 전극 제조

  • Lee, Jin-Hyoung (Department of Materials Science and Engineering/Eco-ProductionMaterials Education Center, Seoul National University of Science and Technology) ;
  • Lee, Tae-Kun (Department of Materials Science and Engineering/Eco-ProductionMaterials Education Center, Seoul National University of Science and Technology) ;
  • Kim, Cheol-Jin (School of Nano/Advanced Material Engineering, Gyeongsang National University)
  • 이진형 (서울과학기술대학교 신소재공학과/친환경 소재부품 인력양성센터) ;
  • 이태근 (서울과학기술대학교 신소재공학과/친환경 소재부품 인력양성센터) ;
  • 김철진 (경상대학교 나노.신소재 공학부(세라믹))
  • Received : 2011.03.10
  • Accepted : 2011.04.26
  • Published : 2011.08.31

Abstract

The energy conversion efficiency of DSSCs (Dye-Sensitized Solar Cells) is dependent on the powder size, the structure, and the morphology of $TiO_2$ electrode. The higher efficiency is obtained with high surface area of the nanoanatase-$TiO_2$ powder adsorbed onto a lot more of the dye. Also, the enhancement of light scattering increases the efficiency with high adsorption of the dye. Powder size, crystalline phase, and shape of $TiO_2$ obtained by hydrothermal method have 15-20 nm, anatase and round. $TiO_2$ electrode has fabricated with the mixture of scattering $TiO_2$ particle with 0.4 ${\mu}m$ in nano-sized powder. Conversion efficiency of series of DSSCs was measured with volume fraction of scattering particle. Photovoltaic characteristics of DSSCs with 10% scattering particles are 3.51 mA for Jsc (short circuit current), 0.79 V for Voc(open circuit potential), filling factor 0.619 and 6.86% for efficiency. Jsc was improved by 11% and enhancement of efficiency by 0.77% compared with that of no scattering particles. The confinement of inserted light by light scattering particles has more increase of the injection of exiton(electron-hole pair) and decrease of moving path in electron. Efficiencies of DSSCs with more than 10% for scattering particles have reduced with increasing the pore in the $TiO_2$ electrode.

염료 감응 태양 전지(Dye-Sensitized Solar Cells: DSSCs)의 에너지 변환효율은 $TiO_2$ 전극의 입자 크기, 구조 및 표면 형태에 의존한다. 높은 비표면적을 갖는 나노 크기의 아나타제 $TiO_2$는 많은 염료를 흡착할 수 있어 변환효율을 증가 시킨다. 또한 전극 내부에서 태양광의 산란을 증가 시키면, 염료가 태양광을 흡수하는 양이 증가하여 효율이 증가할 수 있다. 수열 합성법으로 합성한 $TiO_2$ 분말의 크기는 15-25 nm이고, 결정상은 구형의 anatase 상이다. 0.4 ${\mu}m$$TiO_2$ 산란입자를 합성한 나노 크기의 $TiO_2$ 분말에 혼합하여 전극을 제조하고, DSSCs를 제작한 후 변환효율을 측정하였다. 10% 의 산란 입자가 포함된 DSSCs는 단락전류 3.51 mA, 개방전압 0.79 V, 곡선인자 0.619로 6.86%의 변환 효율을 나타 내었다. 산란 입자의 영향으로 단락전류밀도는 11% 증가하였고, 효율은 0.77% 증가하였다. 산란 입자가 포함되지 않은 DSSCs 보다 산란 입자가 전극으로 들어온 태양광을 산란시켜 전자-홀 쌍의 생성을 증가 시키고, 전자가 전극을 따라 이동하는 경로가 감소하여 효율이 증가하였다. 10% 이상의 산란 입자는 전극 내부에 입자 크기의 큰 기공을 증가 시켜 효율이 감소하였다.

Keywords

References

  1. G. K. Chang, Y. K. Lim and J. C. Jeong, "Textured Surface Epitaxial Base Silicon Solar Cell", J. Microelectron. Packag. Soc., 10(2), 33 (2003).
  2. B. O'Regan and M. Gratzel, "A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal $TiO_2$ Films", Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  3. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos and M. Graetzel, "Conversion of Light to Electricity by Cis-X2bis(2,2'-bipyridyl- 4,4'-dicarboxylate)ruthenium(II) Charge-transfer Sensitizers $(X=Cl^-,Br^-,I^-,CN^-, and SCN-)$ on Nanocrystalline Titanium Dioxide Electrodes", J. Am. Chem. Soc., 115(14), 6382 (1993). https://doi.org/10.1021/ja00067a063
  4. N. G. Park, J. V. D. Lagemaat and A. J. Frank, "Comparison of Dye-Sensitized Rutile- and Anatase-based $TiO_2$ Solar Cells", J. Phys. Chem. B, 104, 8989 (2000).
  5. S. Kim, S. Yoo, S. Roh, S. I. Kim and J. Lee, "Influence of Structural Properties of $TiO_2$Electrode on Photovoltaic Efficiency of Dye-Sensitized Solar Cells", Appl. Chem., 11(2), 610 (2007).
  6. J. Nissfolk, K. Fredin, A. Hagfeldt and G. Boschloo, "Recombination and Transport Processes in Dye-Sensitized Solar Cells Investigated under Working Conditions", J. Phys. Chem. B, 110, 22950 (2006). https://doi.org/10.1021/jp066129y
  7. S. Hore, C. Vetter, R. Kern, H. Smit and A. Hinsch, "Influence of Scattering Layers on Efficiency of Dye-sensitized Solar Cells", Solar Energy Materials & Solar Cells, 90, 1176 (2006). https://doi.org/10.1016/j.solmat.2005.07.002
  8. A. O. T. Patrocinio, L. G. Paterno and N. Y. Murakami Iha, "Layer-by-layer $TiO_2$ Films as Efficient Blocking Layers in Dye-sensitized Solar Cells", Journal of Photoch. Photobio. A: Chemistry, 205, 23 (2009). https://doi.org/10.1016/j.jphotochem.2009.04.008
  9. T. Cho and S. Park, "A Synthesis of Spherical Shape $TiO_2$- $SiO_2$ Complex via Solvothermal Process and Thermal Properties at Non-Isothermal", J. Microelectron. Packag. Soc., 12 (2), 141 (2005).
  10. S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy and M. Gratzel, "Fabrication of Screen-printing Pastes from $TiO_2$ Powders for Dye-sensitised Solar Cells", Prog. Photovolt: Res. Appl., 15, 603 (2007). https://doi.org/10.1002/pip.768
  11. P. Bonhote, A. P. Dias, M. Armand, N. Papageorgius, K. Kalyanasundaram, M. Gratzel, "Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts", Inorg, Chem., 38, 1168 (1996).
  12. M. Zukalova, A. Zukal, L. Kavan, "Organized Mesoporous $TiO_2$ Films Exhibiting Greatly Enhanced Performance in Dye-Sensitized Solar Cells", Nano Letters, 5(9), 1789 (2005). https://doi.org/10.1021/nl051401l