DOI QR코드

DOI QR Code

Fluorine-based inductively coupled plasma etching of ZnO film

ZnO 박막의 fluorine-계 유도결합 플라즈마 식각

  • Park, Jong-Cheon (Department of Nano Fusion Technology, Pusan National University) ;
  • Lee, Byeong-Woo (Department of Marine Equipment Engineering, Korea Maritime University) ;
  • Kim, Byeong-Ik (Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Cho, Hyun (Department of Nanomechatronics Engineering, Pusan National University)
  • 박종천 (부산대학교 나노융합기술학과) ;
  • 이병우 (한국해양대학교 조선기자재공학과) ;
  • 김병익 (한국세라믹기술원) ;
  • 조현 (부산대학교 나노메카트로닉스공학과)
  • Received : 2011.10.13
  • Accepted : 2011.11.18
  • Published : 2011.12.31

Abstract

High density plasma etching of ZnO film was performed in $CF_4$/Ar and $SF_6$/Ar inductively coupled plasmas. Maximum etch rates of ~1950 ${\AA}$/min and ~1400 ${\AA}$/min were obtained for $10CF_4$/5Ar and $10SF_6$/5Ar ICP discharges, respectively. The etched ZnO surfaces showed better RMS roughness values than the unetched control sample under most of the conditions examined. In the $10CF_4$/5Ar ICP discharges, very high etch selectivities were obtained for ZnO over Ni (max. 11) while Al showed etch selectivities in the range of 1.6~4.7 to ZnO.

$CF_4$ Ar 및 $SF_6$/Ar 유도결합 플라즈마을 이용하여 ZnO 박막의 고이온밀도 플라즈마 식각을 수행하였다. $10CF_4$/5Ar, $10SF_6$/5Ar 유도결합 플라즈마에서 최고 ~1950 ${\AA}$/min과 ~1400 ${\AA}$/min의 식각 속도를 확보하였다. 대부분의 조건 하에서 식각된 ZnO 표면은 식각 전보다 더 낮은 표면조도 값들을 나타내었다. $10CF_4$/5Ar 유도결합 플라즈마에서 Ni mask는 ZnO에 대해 최고 11의 높은 식각 선택도를 나타낸 반면에 Al은 이보다 낮은 1.6~4.7 범위의 식각선택도를 나타내었다.

Keywords

References

  1. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den and H. Kumomi, "High-mobility thin-film transistor with amorphous InGaZn$O_{4}$ channel fabricated by room temperature rf-magnetron sputtering", Appl. Phys. Lett. 89 (2006) 112123.
  2. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo and T. Steiner, "Recent progress in processing and properties of ZnO", Superlattices and Microstructures 34 (2003) 3. https://doi.org/10.1016/S0749-6036(03)00093-4
  3. T. Gruber, C. Kirchner, R. King, F. Reuss, A. Waag, F. Bertram, D. Forster, J. Constantine and M. Schreck, "Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy", Appl. Phys. Lett. 83 (2003) 3290. https://doi.org/10.1063/1.1620674
  4. W. Lim, L. Voss, R. Khanna, B.P. Gila, D.P. Norton, F. Ren and S.J. Pearton, "Comparison of CH4/H2 and C2H6/H2 inductively coupled plasma etching of ZnO", Appl. Surf. Sci. 253 (2006) 1269. https://doi.org/10.1016/j.apsusc.2006.01.081
  5. R. Chakraborty, U. Das, D.M. Mohanta and A. Choudhury, "Fabrication of ZnO nanorods for optoelectronic device applications", Indian K. Phys. 83 (2009) 553. https://doi.org/10.1007/s12648-009-0019-x
  6. F.R. Blom, D.J. Yntema, F.C.M. Van De Pol, M. Elwenspoek, J.H.J. Fluitman and Th.J.A. Popma, "Thinfilm ZnO as microchemical actuator at low frequencies", Sensors and Actuators A21-A23 (1990) 226.
  7. N. Yamazoe and N. Miura, Chemical Sensor Technology Vol. 4, (edited by S. Yamauchi and N. Yamazoe, Kodansa-Elseveir, Tokyo, 1992) p.19-42.
  8. Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng and J.G. Lu, "ZnO nanowire field-effect transistors and oxygen sensing properties", Appl. Phys. Lett. 85 (2005) 5923.
  9. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li and C.L. Lin, "Fabrication and ethnol sensing characteristics of ZnO nanowire gas sensors", Appl. Phys. Lett. 84 (2004) 3654. https://doi.org/10.1063/1.1738932
  10. P. Parthangal, R. Cavicchi and M.R. Zachariah, "A universal approach to electrically connecting nanowire arrays using nanoparticles -application to a novel gas sensor architecture", Nanotechnology 17 (2006) 3786. https://doi.org/10.1088/0957-4484/17/15/029
  11. Y. Cao, W. Liu, J. Sun, Y. Han, J. Zhang, S. Liu, H. Sun and J. Guo, "A technique for controlling the alignment of silver nanowires with an electric field", Nanotechnology 17 (2006) 2378. https://doi.org/10.1088/0957-4484/17/9/050
  12. H.C. Kim, J.H. Kim, H.J. Yang, J.S. Suh, T.Y. Kim, B.W. Han, S.W. Kim, D.S. Kim, P.V. Pikhitsa and M.S. Choi, "Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols", Nature Nanotechnology 1 (2006) 117. https://doi.org/10.1038/nnano.2006.94
  13. A. Tsujiko, T. Kisumi, Y. Magari, K. Murakoshi and Y. Nakato, "Selective formation of nanoholes with (100)- face walls by photoetching of n-$TiO_{2}$ (rutile) electrode, accompanied by increases in water-oxidation photocurrent", J. Phys. Chem. B 104 (2000) 4873. https://doi.org/10.1021/jp993285e
  14. J.C. Park, S. Hwang, J.M. Kim, J.K. Kim, W.Y. Lee, J.S. Park, E.H. Kim, Y.G. Jung, K.B. Shim and H. Cho, "Anisotropic pattern transfer in $SnO_{2}$ thin films for the fabrication of nanostrucure-based gas sensors", J. Ceram. Process. Res. 10 (2009) 827.
  15. S.A. Akbar, C. Carney, S.H. Yoon and K. Sandhage, "Ceramic nanostructures by gas phase reaction", 209th The Electrochemical Society Meeting, Abstract #794 (2006).
  16. Y.I. Bang, K.D. Song, B.S. Joo, J.S. Huh, S.D. Choi and D.D. Lee, "Thin film micro carbon dioxide sensor using MEMS process", Sensors and Actuators B 102 (2004) 20. https://doi.org/10.1016/j.snb.2003.11.039