DOI QR코드

DOI QR Code

Performance Analysis of Projection Statistics through Method of Clutter Covariance Matrix Estimation for STAP

STAP를 위한 간섭 공분산 행렬의 예측 방법에 따른 Projection Statistics의 성능 분석

  • Kang, Sung-Yong (Department of Computer and Radio Communication Engineering, Korea University) ;
  • Kim, Kyung-Soo (Department of Radio Engineering, Korea University) ;
  • Jeong, Ji-Chai (Department of Brain and Cognitive Engineering, Korea University)
  • 강성용 (고려대학교 컴퓨터.전파통신공학과) ;
  • 김경수 (고려대학교 전파공학과) ;
  • 정지채 (고려대학교 뇌공학과)
  • Published : 2011.01.31

Abstract

We analyze the performance of various techniques to overcome degradation of performance of STAP caused by nonhomogeneous clutter. The performance of NHD that used to eliminate outliers from nonhomogeneous clutter is improved by using the projection statistics(PS) that is robust to multiple outliers. The method of clutter covariance matrix estimation using a median value and the conventional method are also investigated and then compared. From the simulation results of STAP, the method of clutter covariance matrix estimation using a median value shows better performance than the conventional method for the calculation of the SINR loss, and MSMI for the single target and the multiple targets regardless of the NHD methods.

본 논문은 space-time adaptive processing(STAP)의 불균일한 클러터 환경에 의한 성능 저하를 극복하기 위하여 제시된 다양한 기술에 대하여 성능 분석을 하였다. 불균일한 클러터에 의한 이상치(outlier)를 제거하는 기술인 nonhomogeneity detector(NHD)의 성능 향상을 위해, 다수의 이상치가 존재할 때 기존의 inner product(IP) 혹은 generalized inner product(GIP)보다 좋은 성능을 보여주는 projection statistics(PS)를 적용하였다. 또한, 중위수를 이용한 간섭 공분산 행렬의 예측 방법과 기존의 예측 방법에 따른 성능 분석을 하였다. 시뮬레이션을 통하여 STAP성능 분석을 한 결과, 중위수를 이용한 간섭 공분산 행렬의 예측 방법이 NHD 방법에 구애를 받지 않고 signal to interference plus noise ratio(SINR) 손실, MSMI를 이용한 단일 혹은 다수의 목표물 검출 모두 기존의 간섭 공분산 행렬의 예측 방법보다 우수한 성능을 보임을 확인하였다.

Keywords

References

  1. R. Klemm, "Space-time adaptive processing: principles and applications", vol. 9 of IEE Radar, Sonar, Navigation and Avionics, IEE Press, London, UK, 2000.
  2. L. E. Brennan, L. S. Reed, "Theory of adaptive radar", IEEE Transactions on Aerospace and Electronic Systems, vol. 9, no. 2, pp. 237-252, 1973. https://doi.org/10.1109/TAES.1973.309792
  3. W. L. Melvin, M. C. Wicks, and R. D. Brown, "Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architectures and algorithms", Proc. Nat. Conf. IEEE Radar, Michigan, US, pp. 130-135, May 1996. https://doi.org/10.1109/NRC.1996.510669
  4. W. L. Melvin, M. C. Wicks, "Improving practical space-time adaptive radar", Proc. Nat. Conf. IEEE Radar, NY, US, pp. 48-53, May 1997. https://doi.org/10.1109/NRC.1997.588124
  5. M. Rangaswamy, J. H. Michels, and B. Himed, "Statistical analysis of the non-homogeneity detector for STAP applications", Elsevier Digit. Signal Process, vol. 14, no. 3, pp. 253-267, 2004. https://doi.org/10.1016/S1051-2004(03)00021-6
  6. B. Hocine, M. Sylvie, "Fast iterative subspace algorithms for airborne STAP radar", EURASIP Journal on Applied Signal Processing, vol. 2006, pp. 1-8, Jan. 2006. https://doi.org/10.1155/ASP/2006/96421
  7. G. N. Schoenig, M. L. Picciolo, and L. Mili, "Improved detection of strong nonhomogeneities for STAP via projection statistics", Proc. Int. Conf. IEEE Radar, pp. 720-725, May 2005.
  8. 강성용, 정지채, "중위수를 이용한 새로운 간섭 공분산 행렬의 예측이 적용된 space-time adaptive processing에 대한 연구", 한국전자파학회논문지, 21(1), pp. 20-27, 2010년 1월. https://doi.org/10.5515/KJKIEES.2010.21.1.020
  9. H. Belkacemi, S. Marcos, "Fast iterative subspace algorithms for airborne STAP radar", EURASIP Journal on Applied Signal Processing, vol. 2006, pp. 1-8, 2006. https://doi.org/10.1155/ASP/2006/96421
  10. G. Titi, D. Marshall, "The ARPA/NAVY mountaintop program: Adaptive signal processing for airborne early warning radar", Proc. Int. Conf. IEEE Acoustics, Speech, and Signal Processing, Atlanta, US, vol. 2, pp. 1165-1168, May 1996. https://doi.org/10.1109/ICASSP.1996.543572
  11. P. Tsakalides, C. L. Nikias, "Robust Space-Time Adaptive Processing(STAP) in non-Gaussian clutter environments", IEE Radar, Sonar and Navigation, vol. 146, no. 2, pp. 84-93, Apr. 1999. https://doi.org/10.1049/ip-rsn:19990233