DOI QR코드

DOI QR Code

The Prediction of Injection Distances for the Minimization of the Pressure Drop by Empirical Static Model in a Pulse Air Jet Bag Filter

충격기류식 여과집진기에서 경험모델을 이용한 최소압력손실의 분사거리 예측

  • Suh, Jeong-Min (Department of Regional Environmental System Engineering, Pusan National University) ;
  • Park, Jeong-Ho (Department of Environmental Engineering, Jinju National University) ;
  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University)
  • 서정민 (부산대학교 지역환경시스템공학과) ;
  • 박정호 (진주산업대학교 환경공학과) ;
  • 임우택 (안동대학교 응용화학과)
  • Received : 2010.08.23
  • Accepted : 2010.11.25
  • Published : 2011.01.31

Abstract

The new empirical static model was constructed on the basis of dimension analysis to predict the pressure drop according to the operating conditions. The empirical static model consists of the initial pressure drop term (${\Delta}P_{initial}$) and the dust mass number term($N_{dust}=\frac{{\omega}_0{\nu}_f}{P_{pulse}t}$), and two parameters (dust deposit resistance and exponent of dust mass number) have been estimated from experimental data. The optimum injection distance was identified in the 64 experimental data at the fixed filtration velocity and pulse pressure. The dust deposit resistance ($K_d$), one of the empirical static model parameters got the minimum value at d=0.11m, at which the total pressure drop was minimized. The exponent of dust mass number was interpreted as the elasticity of pressure drop to the dust mass number. The elasticity of the unimodal behavior had also a maximum value at d=0.11m, at which the pressure drop increased most rapidly with the dust mass number. Additionally, the correlation coefficient for the new empirical static model was 0.914.

Keywords

References

  1. Allen, R. W. K., Goyder, H. G. D., Morris, K., 1999, Modelling media movement during cleaning of pulse-jet fabric filters, Chem. Eng. Res. Des., 77(3), 223-230. https://doi.org/10.1205/026387699526133
  2. Calle, S., Contal, P., Thomas, D., Bemer, D., Leclerc, D., 2002, Evolutions of efficiency and pressure drop of filter media during clogging and cleaning cycles, Powder Technol., 128(2-3), 213-217. https://doi.org/10.1016/S0032-5910(02)00199-7
  3. Dean, A. H., Cushing, K. M., 1988, Survey on the use of pulse-jet fabric filters for coal-fired utility and industrial boilers, J. Air Pollut. Cont. Assoc., 38(1), 90-96.
  4. Doring, N., Meyer, J., Kasper, G., 2009, The influence of cake residence time on the Table operation of a high-temperature gas filter, Chem. Eng. Sci., 64(10), 2483-2490. https://doi.org/10.1016/j.ces.2009.02.018
  5. Ellenbecker, M. J., Leith, D., 1980, The effect of dust retention on pressure drop in a high velocity pulse-jet fabric filter, Powder Technol., 25(2), 147-154. https://doi.org/10.1016/0032-5910(80)87025-2
  6. Gabites, J. R., Abrahamson, J., Winchester, J. A., 2008, Design of baghouses for fines collection in milk powder plants, Powder Technol., 187(1), 46-52. https://doi.org/10.1016/j.powtec.2008.01.012
  7. Hindy, K. T., Sievert, J., Loeffler, F., 1987, Influence of cloth structure on operational characteristics of pulse-jet cleaned filter bags, Environ. Int., 13(2), 175-181. https://doi.org/10.1016/0160-4120(87)90087-0
  8. Hsin-Chung, L. U., Tsai, C. J., 1996, Numerical and experimental study of cleaning process of a pulse-jet fabric filtration system, Environ. Sci. Technol., 30(11), 3243-3249. https://doi.org/10.1021/es960020u
  9. Hauke, G., 2008, An introduction to fluid mechanics and transport phenomena, 1st ed., Springer published., Spain, 157-186.
  10. Ju, J., Chiu, M.-S., Tien, C., 2001, Further work on pulse-jet fabric filtration modeling, Powder Technol., 118(1-2), 79-89. https://doi.org/10.1016/S0032-5910(01)00297-2
  11. Jang, Y.-D., 2007, A study on the pressure drop variance of inlet concentration and face velocity in pulse-jet type bag filter, Master's thesis, Miryang National University, Miryang, Korea.
  12. Koehler, J. L., Leith, D., 1983, Model calibration for pressure drop in a pulse-jet cleaned fabric filter, Atmos. Environ., 17(10), 1909-1913. https://doi.org/10.1016/0004-6981(83)90348-7
  13. Kim, S.-T., 2004, A study on the pressure drop variance of pulse interval, injection distance in pulse air-jet type bag filter, Master's thesis, Miryang National University, Miryang, Korea.
  14. Leith, D., Ellenbecker, M. J., 1980, Theory for pressure drop in a pulse-jet cleaned fabric filter, Atmos. Environ., 14(7), 845-852. https://doi.org/10.1016/0004-6981(80)90141-9
  15. Loeffler, F., Sievert, J., 1987, Cleaning mechanisms in pulse-jet fabric filters, Filter. Sep., 24(2), 110-113.
  16. Liu, D. H. F., Liptak, B. G., 1997, Air pollution: Environmental Engineers' Handbook, 2nd ed., Lewis Publishers (CRC Press), 344-349.
  17. Peukert, W., Wadenpohl, C., 2001, Industrial separation of fine particles with difficult dust properties, Powder Technol., 118(1-2), 136-148. https://doi.org/10.1016/S0032-5910(01)00304-7
  18. Park, S. J., Choi, H. K., Park, Y. O., Son, J. E., 2003, Effects of a shroud tube on flow field and particle behavior inside a bag-filter vessel, Aerosol Sci. Technol., 37(9), 685-693. https://doi.org/10.1080/02786820300917
  19. Strangert, S., 1978, Predicting performance of bag filters, Filter. Sep., 15(1), 42-48.
  20. Simon, X., Chazelet, S., Thomas, D., Bemer, D., Regnier, R., 2007, Experimental study of pulse-jet cleaning of bag filters supported by rigid rings, Powder Technol., 172(2), 67-81. https://doi.org/10.1016/j.powtec.2006.10.005
  21. Tsai, C. J., Tsai, M. L., Lu, H. C., 2000, Effect of filtration velocity and filtration pressure drop on the bag-cleaning performance of a pulse-jet baghouse, Sep. Sci. Technol., 35(2), 211-226. https://doi.org/10.1081/SS-100100152