DOI QR코드

DOI QR Code

A Preliminary Study on the Optimal Shape Design of the Axisymmetric Forging Component Using Equivalent Static Loads

등가정하중을 이용한 축대칭 단조품의 형상최적화에 관한 기초연구

  • Received : 2010.06.29
  • Accepted : 2010.11.01
  • Published : 2011.01.01

Abstract

An optimization method is proposed for preform and billet shape designs in the forging process by using the Equivalent Static Loads (ESLs). The preform shape is an important factor in the forging process because the quality of the final forging is significantly influenced by it. The ESLSO is used to determine the shape of the preform. In the ESLSO, nonlinear dynamic loads are transformed to the ESLs and linear response optimization is performed using the ESLs. The design is updated in linear response optimization and nonlinear analysis is performed with the updated design. The examples in this paper show that optimization using the ESLs is useful and the design results are satisfactory. Consequently, the optimal preform and billet shapes which produce the desired final shape have been obtained. Nonlinear analysis and linear response optimization of the forging process are performed using the commercial software LS-DYNA and NASTRAN, respectively.

본 논문은 등가정하중을 이용하여 단조공정의 예비성형체 및 빌렛의 형상설계를 위한 최적화 방법을 제안한다. 단조공정에서 예비성형체의 형상은 최종 성형품의 품질을 결정하는데 중요한 역할을 한다. 본 연구는 빌렛 및 예비성형체의 형상을 설계하기 위하여 등가정하중법을 사용하였다. 등가정하중법은 비선형 동적하중을 등가정하중으로 변환하고 여기서 구한 등가정하중을 이용하여 선형 응답 최적화를 수행하는 방법이다. 설계변수의 갱신은 선형 응답 최적화와 비선형 해석을 통하여 이루어진다. 본 논문에 포함된 예제는 원하는 단조품의 생산을 위한 최적의 예비성형체와 빌렛의 형상을 도출하여 제안한 방법의 유용성을 검증한다. 비선형 해석과 선형 응답 최적화는 각각 LS-DYNA와 NASTRAN을 사용하였다.

Keywords

References

  1. Zhao, G., Wright, E. and Grandhi, R. V., 1996, "Computer Aided Preform Design In Forging Using The Inverse Die Contact Tracking Method," International Journal of Machine Tools and Manufacture, Vol. 36, No. 7, pp. 755-769. https://doi.org/10.1016/0890-6955(96)00123-X
  2. Gao, Z.Y. and Grandhi, R.V., 1999, "Sensitivity Analysis and Shape Optimization for Preform Design in Thermo-Mechanical Coupled Analysis," International Journal for Numerical Methods in Engineering, Vol. 45, No. 10, pp. 1349-1373. https://doi.org/10.1002/(SICI)1097-0207(19990810)45:10<1349::AID-NME634>3.0.CO;2-1
  3. Guan, J., Wang, G.C., Guo, T., Song, L.B. and Zhao, G.Q., 2009, "The Microstructure Optimization of HShape Forgings Based on Preforming Die Design," Materials Science and Engineering A, Vol. 499, No. 1-2, pp. 304-308. https://doi.org/10.1016/j.msea.2007.11.144
  4. Jolgaf, M., Sulaiman, S.B., Ariffin, M.K.A. and Faieza, A.A., 2008, "Closed Die Forging Geometrical Parameters Optimization for AI-MMC," American Journal of Engineering and Applied Science, 1 (1), pp. 1-6. https://doi.org/10.3844/ajeassp.2008.1.6
  5. Park, J. J., Rebelo, N. and Kobayashi, S., 1983, "A New Approach to Preform Design in Metal Forming with the Finite Element Method," International Journal of Machine Tool Design and Research, Vol. 23, No. 1, pp. 71-79. https://doi.org/10.1016/0020-7357(83)90008-2
  6. Kim, N. and Kobayashi, S., 1990, "Preform design in H-shaped Cross Section Axiymmetric Forging by Finite Element Method," International Journal of Machine Tools and Manufacture, Vol. 30, pp. 243-268. https://doi.org/10.1016/0890-6955(90)90134-5
  7. Kim, S. H., Lee, J. H. and Im, H. J., 1996, "Process Development to Form Net-Shape Nosing Shells by the Backward Tracing Scheme of the Rigid-Plastic FEM and Its Experimental Confirmation," Transactions of the Korean Society of mechanical engineers, Vol. 20, No. 7, pp. 2118-2133.
  8. Zhao, G., Wang, G. and Grandhi, R. V., 2002, "Die Cavity Design of Near Flashless Forging Process using FEM-based Backward Simulation," Journal of Materials Processing Technology, Vol. 121, No. 2/3, pp. 173-181. https://doi.org/10.1016/S0924-0136(01)00998-0
  9. Vemuri, K. R., Oh, S.I. and Altan, T., 1989, "BID: A Knowledge-Based System to Automate Blocker Design," International Journal of Machine Tools and Manufacture, Vol. 29, No. 4, pp. 505-518. https://doi.org/10.1016/0890-6955(89)90068-0
  10. Roy, S., Ghosh, S. and Shivpuri, R., 1997, "A New Approach to Optimal Design of Multi-Stage Metal Forming Processes with Micro Genetic Algorithms," International Journal of Machine Tools and Manufacture, Vol. 37, No. 1, pp. 29-44. https://doi.org/10.1016/0890-6955(95)00120-4
  11. Conceicao Antonio, C. A. and Magalhaes Dourado, N., 2002, "Metal Forming Process Optimization by Inverse Evolutionary Search," Material Processing Technology, Vol. 121, pp. 403-413. https://doi.org/10.1016/S0924-0136(01)01251-1
  12. Yeom, S. H., Lee, J. H. and Woo, H. K., 2006, "A Study on the Preform Design of One Direction Flow Forged Part using Genetic Algorithm," Autumn Conference of Transactions of Machine Tool Engineers, pp. 386-391.
  13. Ko, D. C., Kim, D. H. and Kim, B. M., 1999, "Application of Artificial Network and Taguchi Method to Preform Design in Metal Forming Considering Workability," International Journal of Machine Tools and Manufacture, Vol. 39, No. 5, pp. 771-785. https://doi.org/10.1016/S0890-6955(98)00055-8
  14. Park, J. H., Kang, J. H., Ha, M. S., Kim, S. G., Choi, S. G., Baek, D. G. and Park, Y. C., 2007, "Preform Shape Optimization of a Shipping Connecting-Rod using Taguchi method," Journal of the Korean Sociery of Manufacturing Process Engineers, Vol. 6, No. 4, pp. 44-49.
  15. Thiyagarajan, N. and Grandhi, R. V., 2005, "Multilevel Design Process for 3-D Preform Shape Optimization in Metal Forming," Journal of Materials Processing Technology, Vol. 170, No. 1/2, pp. 421-429. https://doi.org/10.1016/j.jmatprotec.2005.05.051
  16. Tang, Y. C., Zhou, X. H. and Chen, J., 2008, "Preform Tool Shape Optimization and Redesign Based on Neural Network Response Surface Methodology," The International Journal of Applied Finite Elements and Computer Aided Engineering, Vol. 44, No. 8, pp. 462-471.
  17. Zhao, G., Wright, E. and Grandhi, R. V., 1997, "Sensitivity Analysis Based Preform Die Shape Design for Net-Shape Forging," International Journal of Machine Tools and Manufacture, Vol. 37, No. 9, pp. 1251-1271. https://doi.org/10.1016/S0890-6955(96)00087-9
  18. Park, G. J., 2007, Analytical Methods for Design Practice, Springer, London, pp. 255-310.
  19. Shin, M. K., Park, K. J. and Park, G. J., 2007, "Optimization of Structures with Nonlinear Behavior Using Equivalent Loads" Computer Methods in Applied Mechanics and Engineering Vol.196, No.4, pp. 1154-1167. https://doi.org/10.1016/j.cma.2006.09.001
  20. LS-DYNA User’s Manual Version 971, 2007, Livermore Software Technology Corporation.
  21. MD R3 NASTRAN User’s Guide, 2007, MSC Software Corporation.
  22. Hosford, W. F. and Caddell, R. M., 1993, Mechanics and Metallurgy, Prentice Hall, New Jersey.
  23. Reddy, J. N., 2005, An Introduction to Nonlinear Finite Element Analysis, Oxford University Press, New York.
  24. Lee, J. J. and Park, G. J., 2010, "Shape Optimization of the Initial Blank in the Sheet Metal Forming Process using Equivalent Static Loads," International Journal for Numerical Methods in Engineering, (Published online).
  25. Taylor, J. E. and Bendsoe, M. P., 1984, "An Interpretation for Min-Max Structural Design Problems Including a Method for Relaxing Constraints," International Journal of Solids Structures, Vol. 20, No. 4, pp. 301-314. https://doi.org/10.1016/0020-7683(84)90041-6

Cited by

  1. Study of Blank Thickness Optimization in Free Bulging for Maximizing Bulged Height vol.38, pp.8, 2014, https://doi.org/10.3795/KSME-A.2014.38.8.899