DOI QR코드

DOI QR Code

Measurement of Geometric Errors of an Ultra Precision mMT Using PSDs

PSD를 이용한 초정밀소형공작기계의 기하학적 오차 측정

  • Received : 2010.08.16
  • Accepted : 2010.11.10
  • Published : 2011.01.01

Abstract

Ultra-precision miniaturized machine tools essential for manufacturing accurate machine components in micro/meso-scale have been developed. To realize high accuracy using mMTs, geometric errors, which are considered as the main sources of inaccuracy should be identified and compensated. The conventional systems for measuring geometric errors, such as a laser interferometer, can measure only one geometric error in a single setup and they involve complicated measurement procedures. A measurement system using PSDs is a promising alternative but the measurable range of such systems is limited to the active range of the PSDs. The proposed measurement system using PSDs can overcome the limit of small measurable range. Further, the mounting errors that could occur during set-up process can be avoided. In this paper, an algorithm corresponding to the system was analyzed and experiments were carried out.

초정밀 소형공작기계는 초정밀가공분야에서 마이크로/메조 스케일 가공품의 정밀제조기술의 핵심으로 개발되어 왔다. 소형초정밀기계의 기하학적 오차는 가공품의 품질에 큰 영향을 미치기 때문에 반드시 분석 및 보정되어야 한다. 기존 소형공작기계의 기하학적 오차는 주로 레이저 간섭계로 측정되었으나 한번의 설치로 모든 기하학적 오차를 측정할 수 없고 까다로운 절차를 따라야 한다. 그 대안으로써 PSD 로 구성된 측정시스템이 개발되었으나 측정가능거리가 PSD 의 유효영역에 한정되었다. 본 논문에서는 측정가능거리를 확장시키고 설치오차를 최소화하여 6-자유도 기하학적 오차를 측정하는 시스템을 제안하고 민감도 해석과 실험을 통하여 이 측정 시스템의 정확도를 증명하였다.

Keywords

References

  1. Fujimasa, I., 1993, “Perspective of Micromachine Research,” The Journal of the Institute of Electronics, Information, and Communication Engineers, Vol. 76, No. 9, p. 976.
  2. Takaya, Y., Shimizu, H., Takahashi, S. and Miyoshi, T., 1999, “Fundamental Study on the New Probe Technique for the Nano-CMM Based on the Laser Trapping and Mirau Interferometer,” Journal of the International Measurement Confederation, Vol.25, No.1, pp. 9-18. https://doi.org/10.1016/S0263-2241(98)00062-1
  3. Yang. H., Pan. C.T. and M.C. Chou, 2001, “Ultra-Fine Machining Tool/Molds by LIGA Technology,” Journal of Micromechanics and Microengineering, Vol. 11, No. 2, pp. 94-99. https://doi.org/10.1088/0960-1317/11/2/302
  4. Hewlett Packard, HP 5529A Dynamic Calibrator: Verify Machine Performance with the World Standard for Laser-Based Metrology.
  5. Bae, E.W., Kim, J.A. and Kim, S.H., 2001, “Multi-Degree-of-Freedom Displacement Measurement System for Milli-Structures,” Measurement Science & Technology, Vol. 12, No. 9, pp. 1495-1502. https://doi.org/10.1088/0957-0233/12/9/316
  6. Prather, M. J., Cuttino, J. F. and Schinstock, D. E., 1996, “Three-Dimensional Metrology Frame for Precision Applications,” American Society for Precision Engineering, pp. 668-671.
  7. Lee, J.H. and Yang, S.H., 2005, “Measurement of Geometric Errors in a Miniaturized Machine Tool Using Capacitance Sensors,” Journal of Materials Processing Technology, Vol. 164/165, pp. 1402-1409. https://doi.org/10.1016/j.jmatprotec.2005.02.073
  8. Lee, S. W., Mayor, R. and Ni, J., 2005, “Development of a Six-Degree-of-Freedom Geometric Error Measurement System for a Meso-Scale Machine Tool,” Journal of Manufacturing Science and Engineering, Vol. 127, No. 4, pp. 857-865. https://doi.org/10.1115/1.2035692