Calculation of Energy Spectra for Electron Beam of Medical Linear Accelerator Using GEANT4

GEANT4를 이용한 선형가속기 기초 코드 작성과 전자선 에너지 분포 계산

  • Joh, Young-Gull (Department of Physics, College of Science, Yeungnam University) ;
  • Kim, Hyung-Dong (Department of Physics, College of Science, Yeungnam University) ;
  • Kim, Byung-Young (Department of Physics, College of Science, Yeungnam University) ;
  • Kim, Sung-Jin (Department of Physics, College of Science, Yeungnam University) ;
  • Oh, Se-An (Department of Physics, College of Science, Yeungnam University) ;
  • Kang, Jeong-Ku (Department of Radiation Oncology, Prebysterian Medical Center) ;
  • Kim, Sung-Kyu (Department of Therapeutic Radiology&Oncology, College of Medicine, Yeungnam University)
  • 조영걸 (영남대학교 이과대학 물리학과) ;
  • 김형동 (영남대학교 이과대학 물리학과) ;
  • 김병용 (영남대학교 이과대학 물리학과) ;
  • 김성진 (영남대학교 이과대학 물리학과) ;
  • 오세안 (영남대학교 이과대학 물리학과) ;
  • 강정구 (전주예수병원 방사선종양학과) ;
  • 김성규 (영남대학교 의과대학 방사선종양학교실)
  • Received : 2011.05.16
  • Accepted : 2011.06.30
  • Published : 2011.06.30

Abstract

The energy spectra for electron beam of medical linear accelerator were calculated using a GEANT4 Medical Linac 2 example code. The incident electron mean energy were 6, 9, 12, 16, 20 MeV. This code was designed to calculate electron beam energy spectra according to material, thickness and location of electron scattering foil affecting electron beam characteristic. Lead, Copper, Aluminum and Gold were used for scattering foil. The energy distribution for electron and photon were analyzed by changing position of scattering foil in the head of linear accelerator. The effect of electron scattering foil on energy spectra which is basic data of simulation for medical linear accelerator were presented. The calculated results would be used in design of medical accelerator head.

GEANT4 Medical Linac 2 예제 코드를 이용하여 선형가속기 전자선의 에너지 분포를 계산하였다. 입사 전자의 평균 에너지는 6, 9, 12, 16, 20 MeV이었으며, 전자선 특성에 영향을 주는 전자선 산란박 물질, 두께, 위치에 따른 에너지 분포를 계산하였다. 산란박 물질은 납, 구리, 알루미늄, 금을 사용하였다. 산란박 위치를 변경하여 선형 가속기 헤드 속 산란박 위치가 전자 및 광자 에너지 분포에 미치는 영향을 분석하였다. 의료용 선형가속기 시뮬레이션의 기초자료인 에너지 분포에 대해 여러 가지 산란박 조건을 적용하여 경향을 나타내었다. 이 결과는 선형가속기 헤드 설계에 이용될 수 있을 것으로 본다.

Keywords

References

  1. Ma CM, Jiang SB: Monte Carlo modelling of electron beams from medical accelerators. Phys Med Bio 44:R157-R189 (1999) https://doi.org/10.1088/0031-9155/44/12/201
  2. Chetty IJ, Curran B, Cygler JE, et al: AAPM Report TG-105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Report of the AAPM Task Group No. 105 Med Phys 34:4818-4853 (2007) https://doi.org/10.1118/1.2795842
  3. Almond PR, Biggs PJ, Coursey BM, et al: AAPM Report TG-51: Protocol for clinical reference dosimetry of high-energy photon and electron beams. Report of AAPM Task Group No. 51. Med Phys 26:1847-1870 (1999) https://doi.org/10.1118/1.598691
  4. Faddegon B, Egley B, Steinberg T: Comparison of beam characteristics of a gold x-ray target and a tungsten replacement target. Med Phys 31:91-97 (2004) https://doi.org/10.1118/1.1634491
  5. Faddegon BA, O'Brien PF, Mason DLD: The flattened area of Siemens linear accelerator x-ray fields. Med Phys 26:220-228 (1999) https://doi.org/10.1118/1.598508
  6. Faddegon BA, Perl J, Asai M: Monte Carlo simulation of large electron fields. Phys Med Biol 53:1497-1510 (2008) https://doi.org/10.1088/0031-9155/53/5/021
  7. Hogstrom KR, Boyd RA, Antolak JA, et al: Dosimetry of a prototype retractable eMLC for fixed-beam electron therapy. Med Phys 35:5777-5786 (2004)
  8. Rogers DWO, Faddegon BA, Ding GX, Ma CM, Wei J: BEAM: a Monte Carlo code to simulate radiotherapy treatment units. Med Phys 22:503-524 (1995) https://doi.org/10.1118/1.597552
  9. Los Alamos National Laboratory: MCNPX (Monte Carlo N-Particle Code System) User's Manual V2.4.0, LANL (2002)
  10. GEANT4 Collaboration: GEANT4 developments and applications. IEEE Transactions on Nuclear Science 53:270-278 (2007)
  11. GEANT4 Collaboration: Physics Reference Manual for GEANT4 CERN (2008)
  12. Poon E, Verhaegen F: Accuracy of the photon and electron physics in GEANT4 for radiotherapy applications. Med Phys 32:1696-1711 (2005) https://doi.org/10.1118/1.1895796
  13. Bjork P, Knoos T, Nilsson P: Influence of initial electron beam characteristics on monte carlo calculated absorbed dose distributions for linear accelerator electron beams. Phys Med Biol 47:4019-4041 (2002) https://doi.org/10.1088/0031-9155/47/22/308
  14. Manuel Vilchesa, Salvador GP, Rafael G, et al: Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS. Radiotherapy and Oncology 86:104-108 (2008) https://doi.org/10.1016/j.radonc.2007.11.026
  15. Berger MJ, Seltzer SM: The influence of scattering foils on absorbed dose distributions from electron beams. Gaitherburg NBS Report 78-1552 (1978)