DOI QR코드

DOI QR Code

Characterization of UV curable hybrid hard coating materials prepared by sol-gel method

  • Kim, Seong-Woo (Department of Chemical Engineering, Kyonggi University)
  • Published : 20110100

Abstract

Using sol-gel method, UV-curable urethane acrylate resin system was hybridized with inorganic silicate network to produce hybrid coating materials with high anti-abrasive property. In preparation of acrylate/$SiO_{2}$ hybrid materials, various acrylic reactants with multi-functional groups in addition to urethane acrylate oligomer as the main network former were employed to obtain more densified organic network structure with a high degree of cross-linking. As a silane coupling agent, 3-methacryloxypropyl-trimethoxysilane (MPTMS) was used to promote interfacial attraction between UV-cured organic acrylate resin and inorganic silicate component in the hybrid. The addition of MPTMS offered significant effect on the improvement of phase compatibility between organic and inorganic phases, which resulted in stable and homogeneous morphology with a dispersion of nano-sized fine silica particles. The results of morphological observation, glass transition behavior, and optical transparency for the hybrid gels provided an evidence for the increased interfacial attraction between two phases. From the Taber abrasion test for the hybrid coating films, it was revealed that there existed optimal ranges of inorganic silicate precursor TEOS and silane coupling agent MPTMS contents for the preparation of UV cured acrylate/$SiO_{2}$ hybrid with high abrasion resistant property.

Keywords

References

  1. M. E. L. Wouters, D. P. Wolfs, M. C. van der Linde, J. H. P. Hovens and A. H. A. Tinnemans, Prog. Org. Coat., 51, 312 (2004). https://doi.org/10.1016/j.porgcoat.2004.07.020
  2. J. Gilberts, A. H. A. Tinnemans, M. P. Hogerheide and T. P. M. Koster, J. Sol-Gel Sci. Technol., 11, 153 (1998). https://doi.org/10.1023/A:1008693413965
  3. W. Tanglumlert, P. Prasassarakich, P. Supaphol and S. Wongkasemjit, Surf. Coat. Technol., 200, 2784 (2006). https://doi.org/10.1016/j.surfcoat.2004.11.018
  4. Y. Han, Alan Taylor, M. D. Mantle and K. M. Knowles, J. Sol-Gel Sci. Technol., 43, 111 (2007). https://doi.org/10.1007/s10971-007-1544-8
  5. C. H. Shu, H. Chiang, R. C. Tsiang, T. Liu and J. Wu, J. Appl. Polym. Sci., 103, 3985 (2007). https://doi.org/10.1002/app.25477
  6. M.V. Kahraman, M. Kugu, Y. Menceloglu, N. Kayaman-Apohan and A. Gungor, J. Non-Cryst. Solids, 352, 2143 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.02.029
  7. P. Innocenzi, M. Esposto and A. Maddalena, J. Sol-Gel Sci. Technol., 20, 293 (2001). https://doi.org/10.1023/A:1008782203971
  8. J. Krons, S. Amberg-Schwab and G. Schottner, J. Sol-Gel Sci. Technol., 2, 189 (1994). https://doi.org/10.1007/BF00486239
  9. T. Iwamoto and J. D. Macenzie, J. Mater. Sci., 30, 2566 (1995). https://doi.org/10.1007/BF00362135
  10. P. Innocenzi, G. Brusatin, M. Guglielmi and R. Bertani, Chem. Mater., 11, 1672 (1999). https://doi.org/10.1021/cm980734z
  11. E. Amerio, P. Fabbri, G. Malucelli, M. Messori, M. Sangermano and R. Taurino, Prog. Org. Coat., 62, 129 (2008). https://doi.org/10.1016/j.porgcoat.2007.10.003
  12. J. Jang, J. Bae and D. Kang, Polym. Int., 50, 1247 (2001). https://doi.org/10.1002/pi.734
  13. S.W. Kim, Korean J. Chem. Eng., 25, 1195 (2008). https://doi.org/10.1007/s11814-008-0197-9
  14. G. H. Hsiue, Y. L. Liu and H. H. Liao, J. Polym. Sci.: Part A: Polym. Chem., 39, 986 (2001). https://doi.org/10.1002/1099-0518(20010401)39:7<986::AID-POLA1074>3.0.CO;2-W
  15. C. J. Brinker and G.W. Scherer, Sol-Gel Science: The physics and chemistry of sol-gel processing, Academic Press, San Diego (1990).

Cited by

  1. 실리카 다공체에 의한 발광다이오드 백라이트 유닛용 폴리카보네이트계 확산판의 광학 및 열-기계적 물성의 향상 연구 vol.36, pp.6, 2011, https://doi.org/10.7317/pk.2012.36.6.761
  2. 마이크로 중공구를 이용한 자외선 경화 코팅 박막의 단열 특성 vol.50, pp.4, 2011, https://doi.org/10.9713/kcer.2012.50.4.621
  3. UV-curable fluorine-containing hybrid coatings via thiol-ene “click” reaction and an in situ sol-gel method vol.70, pp.3, 2013, https://doi.org/10.1007/s00289-012-0871-2
  4. 유-무기 하이브리드 코팅 용액을 이용한 고굴절 하드코팅 막의 제조 vol.52, pp.3, 2011, https://doi.org/10.9713/kcer.2014.52.3.388
  5. Enhancing Mar and Abrasion Resistance of Acrylic Hard Coatings with Soft Base Layer vol.6, pp.1, 2011, https://doi.org/10.4236/ojopm.2016.61006
  6. Alumina Sol의 제조 시 사용되는 해교제 종류가 코팅 도막의 물성에 미치는 영향 vol.54, pp.6, 2011, https://doi.org/10.9713/kcer.2016.54.6.767
  7. Enhancement of physical and optical performances of polycarbonate‐based diffusers for direct‐lit LED backlight unit by incorporation of nanoclay platelets vol.133, pp.6, 2011, https://doi.org/10.1002/app.42973
  8. 실란커플링제 종류가 친수성 코팅 필름의 물성에 미치는 영향 vol.54, pp.2, 2011, https://doi.org/10.9713/kcer.2016.54.2.163
  9. Development of Blue Light Cut Films Using a Roll-to-Roll Nano Micro Coating System vol.17, pp.3, 2011, https://doi.org/10.4313/teem.2016.17.3.178
  10. Anti-corrosive performance of epoxy coatings containing various nano-particles for splash zone applications vol.34, pp.8, 2011, https://doi.org/10.1007/s11814-017-0114-1
  11. Organic-Inorganic Hybrid Planarization and Water Vapor Barrier Coatings on Cellulose Nanofibrils Substrates vol.6, pp.None, 2011, https://doi.org/10.3389/fchem.2018.00571
  12. Effects of perfluoro modified sol‐gel additive on UV‐curable phosphorus containing urethane acrylate coatings vol.24, pp.suppl1, 2011, https://doi.org/10.1002/vnl.21616
  13. Novel Chromium-Free Technologies for the Prevention of Wet Stack Corrosion on Hot Dipped Metallic Coatings: A Review vol.74, pp.8, 2011, https://doi.org/10.5006/2772
  14. Influence of silane coupling agent on the properties of UV curable SiO2-PMMA hybrid nanocomposite vol.89, pp.3, 2019, https://doi.org/10.1007/s10971-018-4861-1
  15. Preparation of UV-curable hybrid films via sol-gel synthesis for hydrophobic surface applications vol.91, pp.1, 2011, https://doi.org/10.1007/s10971-019-05027-x
  16. Growing Nano-SiO2 on the Surface of Aramid Fibers Assisted by Supercritical CO2 to Enhance the Thermal Stability, Interfacial Shear Strength, and UV Resistance vol.11, pp.9, 2019, https://doi.org/10.3390/polym11091397
  17. Mechanical, anti-bacterial, and easy-to-clean properties of hybrid polymer-based composites containing modified SiO2 prepared by thermal polymerization vol.74, pp.10, 2020, https://doi.org/10.1007/s11696-020-01167-5