DOI QR코드

DOI QR Code

Review Paper: Nano-Floating Gate Memory Devices

  • Lee, Jang-Sik (School of Advanced Materials Engineering, Kookmin University)
  • Published : 2011.09.01

Abstract

In recent decades, memory device technology has advanced through active research and the development of innovative technologies. Single transistor-based flash memory device is one of the most widely used forms of memory devices because their device structure is simple and the scaling is feasible. A nano-floating gate memory (NFGM) device is a kind of flash memory devices that uses nanocrystals as a charge-trapping element. The use of nanocrystals has advantages over memory devices that rely on other methods such as discontinuous trap sites and controllable trap levels. Nowadays considerable progress has been made in the field of NFGM devices, and novel application areas have been explored extensively. This review article focuses on new technologies that are advancing these developments. The discussion highlights recent efforts and research activities regarding the fabrication and characterization of nonvolatile memory devices that use a nanocrystal layer asa charge-trapping element. The review concludes with an analysis of device fabrication strategies and device architectures of NFGM devices for possible applicationto devices that are organic, printed, and flexible.

Keywords

References

  1. J. S. Lee, J. Mater. Chem. 21, 14097 (2011). https://doi.org/10.1039/c1jm11050k
  2. K. Kim and S. Y. Lee, Microelectron. Eng. 84, 1976 (2007). https://doi.org/10.1016/j.mee.2007.04.120
  3. R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, P. IEEE 91, 489 (2003). https://doi.org/10.1109/JPROC.2003.811702
  4. S. Aritome, R. Shirota, G. Hemink, T. Endoh, and F. Masuoka, P. IEEE 81, 776 (1993). https://doi.org/10.1109/5.220908
  5. C. A. P. Dearaujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature 374, 627 (1995). https://doi.org/10.1038/374627a0
  6. A. Fazio, MRS Bull. 29, 814 (2004). https://doi.org/10.1557/mrs2004.233
  7. H. F. Hamann, M. O'Boyle, Y. C. Martin, M. Rooks, and K. Wickramasinghe, Nat. Mater. 5, 383 (2006). https://doi.org/10.1038/nmat1627
  8. P. Pavan, R. Bez, P. Olivo, and E. Zanoni, P. IEEE 85, 1248 (1997). https://doi.org/10.1109/5.622505
  9. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007). https://doi.org/10.1038/nmat2023
  10. C. Golla P. Cappelletti, P. Olivo, E. Zanoni, Flash Memories, Kluwer Academic Publishers, Dordrecht, Netherlands (1999).
  11. C. G. Hwang, P. IEEE 91, 1765 (2003).
  12. Y. M. Kim and J. S. Lee, J. Appl. Phys. 104, 114115 (2008). https://doi.org/10.1063/1.3041475
  13. J. S. Lee and Q. X. Jia, Electron. Mater. Lett. 4, 95 (2008).
  14. J. S. Lee, Gold Bull. 43, 189 (2010). https://doi.org/10.1007/BF03214986
  15. J. S. Lee et al., Jpn. J. Appl. Phys. Part 1 45, 3213 (2006). https://doi.org/10.1143/JJAP.45.3213
  16. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, Appl. Phys. Lett. 68, 1377 (1996). https://doi.org/10.1063/1.116085
  17. S. Tiwari, F. Rana, K. Chan, L. Shi, and H. Hanafi, Appl. Phys. Lett. 69, 1232 (1996). https://doi.org/10.1063/1.117421
  18. H. I. Hanafi, S. Tiwari, and I. Khan, IEEE T. Electron Dev. 43, 1553 (1996). https://doi.org/10.1109/16.535349
  19. Y. C. King, T. J. King, and C. M. Hu, IEEE T. Electron Dev. 48, 696 (2001).
  20. J. De Blauwe, Ieee Transactions on Nanotechnology 1, 72 (2002). https://doi.org/10.1109/TNANO.2002.1005428
  21. Z. T. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, v 49, 1606 (2002). https://doi.org/10.1109/TED.2002.802617
  22. Q. D. Ling, D. J. Liaw, C. X. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, Prog. Polym. Sci. 33, 917 (2008). https://doi.org/10.1016/j.progpolymsci.2008.08.001
  23. D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, Chem. Rev. 110, 389 (2010). https://doi.org/10.1021/cr900137k
  24. C. H. Lee, J. Meteer, V. Narayanan, and E. C. Kan, J. Electron. Mater. 34, 1 (2005). https://doi.org/10.1007/s11664-005-0172-8
  25. K. C. Chan, P. F. Lee, and J. Y. Dai, Appl. Phys. Lett. 92, 223105 (2008). https://doi.org/10.1063/1.2936847
  26. Y. S. Lo, K. C. Liu, J. Y. Wu, C. H. Hou, and T. B. Wu, Appl. Phys. Lett. 93, 132907 (2008). https://doi.org/10.1063/1.2995862
  27. J. H. Kim, K. H. Baek, C. K. Kim, Y. B. Kim, and C. S. Yoon, Appl. Phys. Lett. 90, 123118 (2007). https://doi.org/10.1063/1.2716345
  28. H. Park, A. Kim, C. Lee, J. S. Lee, and J. Lee, Appl. Phys. Lett. 94, 213508 (2009). https://doi.org/10.1063/1.3139072
  29. D. J. Lee, S. S. Yim, K. S. Kim, S. H. Kim, and K. B. Kim, J. Appl. Phys. 107 (2010).
  30. W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, Appl. Phys. Lett. 90, 042906 (2007). https://doi.org/10.1063/1.2435598
  31. C. Lee, J. H. Kwon, J. S. Lee, Y. M. Kim, Y. Choi, H. Shin, J. Lee, and B. H. Sohn, Appl. Phys. Lett. 91, 153506 (2007). https://doi.org/10.1063/1.2798502
  32. J. S. Lee, Y. M. Kim, J. H. Kwon, H. Shin, B. H. Sohn, and J. Lee, Adv. Mater. 21, 178 (2009). https://doi.org/10.1002/adma.200800340
  33. J. S. Lee, Y. M. Kim, J. H. Kwon, J. S. Sim, H. Shin, B. H. Sohn, and Q. X. Jia, Adv. Mater. 23, 2064 (2011). https://doi.org/10.1002/adma.201004150
  34. W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. Chen, S. Zhang, A. Dodabalapur, and S. G. Mhaisalkar, Adv. Mater. 20, 2325 (2008). https://doi.org/10.1002/adma.200702567
  35. J. S. Lee, J. Cho, C. Lee, I. Kim, J. Park, Y. M. Kim, H. Shin, J. Lee, and F. Caruso, Nat. Nanotechnol. 2, 790 (2007). https://doi.org/10.1038/nnano.2007.380
  36. S. Kolliopoulou et al., J. Appl. Phys. 94, 5234 (2003). https://doi.org/10.1063/1.1604962
  37. S. Koliopoulou, P. Dimitrakis, D. Goustouridis, P. Normand, C. Pearson, M. C. Petty, H. Radamson, and D. Tsoukalas, Microelectronic Engineering 83, 1563 (2006). https://doi.org/10.1016/j.mee.2006.01.235
  38. R. Muralidhar et al., Technical Digest of International Electron Devices Meeting, p. 601, IEEE, Washington, DC (2003).
  39. C. Gerardi et al., IEEE T. Electron Dev. 54, 1376 (2007). https://doi.org/10.1109/TED.2007.895868
  40. C. Gerardi, S. Lombardo, G. Ammendola, G. Costa, V. Ancarani, D. Mello, S. Giuffrida, and M. C. Plantamura, Microelectron. Reliab. 47, 593 (2007). https://doi.org/10.1016/j.microrel.2007.01.024
  41. J. Sarkar, S. Dey, D. Shahrjerdi, and S. K. Banerjee, IEEE T. Electron Dev. 28, 449 (2007). https://doi.org/10.1109/LED.2007.895445
  42. S. Jacob et al., Solid-State Electron. 52, 1452 (2008). https://doi.org/10.1016/j.sse.2008.04.032
  43. Z. C. Liu, F. L. Xue, Y. Su, Y. M. Lvov, and K. Varahramyan, IEEE T. Nanotechnol. 5, 379 (2006). https://doi.org/10.1109/TNANO.2006.876928
  44. C. Novembre, D. Guerin, K. Lmimouni, C. Gamrat, and D. Vuillaume, Appl. Phys. Lett. 92, 103314 (2008). https://doi.org/10.1063/1.2896602
  45. M. F. Mabrook, Y. J. Yun, C. Pearson, D. A. Zeze, and M. C. Petty, Appl. Phys. Lett. 94, 173302 (2009). https://doi.org/10.1063/1.3126021
  46. Y. M. Kim, Y. S. Park, A. O'Reilly, and J. S. Lee, Electrochem. Solid St. 13, H134 (2010). https://doi.org/10.1149/1.3299270
  47. S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, Appl. Phys. Lett. 96, 033302 (2010). https://doi.org/10.1063/1.3297878
  48. L. J. Zhen, W. H. Guan, L. W. Shang, M. Liu, and G. Liu, J. Phys. D-Appl. Phys. 41, 135111 (2008). https://doi.org/10.1088/0022-3727/41/13/135111
  49. W. L. Leong, N. Mathews, S. Mhaisalkar, Y. M. Lam, T. P. Chen, and P. S. Lee, J. Mater. Chem. 19, 7354 (2009). https://doi.org/10.1039/b911493a
  50. Y. M. Kim, S. J. Kim, and J. S. Lee, IEEE Electr. Device L. 31, 503 (2010). https://doi.org/10.1109/LED.2010.2041743
  51. S. J. Kim and J. S. Lee, Nano Lett. 10, 2884 (2010). https://doi.org/10.1021/nl1009662
  52. Y. S. Park, S. Chung, S. J. Kim, S. H. Lyu, J. W. Jang, S. K. Kwon, Y. Hong, and J. S. Lee, Appl. Phys. Lett. 96, 213107 (2010). https://doi.org/10.1063/1.3435470
  53. Y. S. Park, S. Y. Lee, and J. S. Lee, IEEE Electr. Device L. 31, 1134 (2010). https://doi.org/10.1109/LED.2010.2063013
  54. J. C. Park, S. Kim, C. Kim, I. Song, Y. Park, U. I. Jung, D. H. Kim, and J. S. Lee, Adv. Mater. 22, 5512 (2010). https://doi.org/10.1002/adma.201002397

Cited by

  1. Floating-Gate Type Organic Memory with Organic Insulator Thin Film of Plasma Polymerized Methyl Methacrylate vol.52, pp.r2, 2011, https://doi.org/10.7567/jjap.52.021601
  2. Graphene nano-floating gate transistor memory on plastic. vol.6, pp.24, 2011, https://doi.org/10.1039/c4nr04117h
  3. Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets vol.2, pp.37, 2011, https://doi.org/10.1039/c4tc01385a
  4. Floating-gate type organic memory device with organic insulator film of plasma polymerized styrene vol.53, pp.3, 2011, https://doi.org/10.7567/jjap.53.031602
  5. 플로팅 게이트형 유기메모리 동작특성 vol.15, pp.8, 2011, https://doi.org/10.5762/kais.2014.15.8.5213
  6. Charge‐Trap Flash‐Memory Oxide Transistors Enabled by Copper–Zirconia Composites vol.26, pp.42, 2011, https://doi.org/10.1002/adma.201401354
  7. Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics vol.4, pp.3, 2011, https://doi.org/10.3390/electronics4030424
  8. High‐Performance Flexible Organic Nano‐Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles vol.11, pp.37, 2011, https://doi.org/10.1002/smll.201501382
  9. Phthalocyanine‐Cored Star‐Shaped Polystyrene for Nano Floating Gate in Nonvolatile Organic Transistor Memory Device vol.2, pp.2, 2011, https://doi.org/10.1002/aelm.201500300
  10. Photo-enhanced polymer memory device based on polyimide containing spiropyran vol.12, pp.4, 2011, https://doi.org/10.1007/s13391-016-4019-7
  11. Resonant tunneling based graphene quantum dot memristors vol.8, pp.48, 2011, https://doi.org/10.1039/c6nr07969e
  12. Graphene-Based Floating-Gate Nonvolatile Optical Switch vol.28, pp.3, 2011, https://doi.org/10.1109/lpt.2015.2494876
  13. Integrated low‐temperature process for the fabrication of amorphous Si nanoparticles embedded in Al2O3 for non‐volatile memory application vol.213, pp.9, 2011, https://doi.org/10.1002/pssa.201600064
  14. Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices vol.25, pp.9, 2016, https://doi.org/10.1088/1674-1056/25/9/097304
  15. 이온젤 전해질 절연체 기반 고분자 비휘발성 메모리 트랜지스터 vol.29, pp.12, 2011, https://doi.org/10.4313/jkem.2016.29.12.759
  16. An Active Absorber Based on Nonvolatile Floating-Gate Graphene Structure vol.16, pp.2, 2011, https://doi.org/10.1109/tnano.2016.2647283
  17. Crystal that remembers: several ways to utilize nanocrystals in resistive switching memory vol.50, pp.30, 2017, https://doi.org/10.1088/1361-6463/aa7572
  18. Investigation of electrical and compositional properties of SiO2/Au/SiO2 for nonvolatile memory application vol.124, pp.8, 2018, https://doi.org/10.1007/s00339-018-1961-2
  19. Graphene-based nonvolatile terahertz switch with asymmetric electrodes vol.8, pp.None, 2011, https://doi.org/10.1038/s41598-018-20047-3
  20. Softening gold for elastronics vol.48, pp.6, 2011, https://doi.org/10.1039/c8cs00609a
  21. Self-Assembled Sn Nanocrystals as the Floating Gate of Nonvolatile Flash Memory vol.1, pp.9, 2011, https://doi.org/10.1021/acsaelm.9b00379
  22. Low temperature below 200 °C solution processed tunable flash memory device without tunneling and blocking layer vol.10, pp.1, 2019, https://doi.org/10.1038/s41467-019-10142-y
  23. Introducing pinMOS Memory: A Novel, Nonvolatile Organic Memory Device vol.30, pp.4, 2020, https://doi.org/10.1002/adfm.201907119
  24. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems vol.120, pp.9, 2011, https://doi.org/10.1021/acs.chemrev.9b00730
  25. Realizing Nonvolatile Photomemories with Multilevel Memory Behaviors Using Water-Processable Polymer Dots-Based Hybrid Floating Gates vol.3, pp.4, 2011, https://doi.org/10.1021/acsaelm.1c00031
  26. Serial Detection with Neural Network-Based Noise Prediction for Bit-Patterned Media Recording Systems vol.11, pp.10, 2021, https://doi.org/10.3390/app11104387
  27. High-Performance Non-Volatile InGaZnO Based Flash Memory Device Embedded with a Monolayer Au Nanoparticles vol.11, pp.5, 2011, https://doi.org/10.3390/nano11051101
  28. Recent advances in metal nanoparticle‐based floating gate memory vol.2, pp.7, 2011, https://doi.org/10.1002/nano.202000268
  29. Size dependence of charge retention in gold-nanoparticles sandwiched between thin layers of titanium oxide and silicon oxide vol.119, pp.16, 2011, https://doi.org/10.1063/5.0063515