DOI QR코드

DOI QR Code

Synthesis of Bi-Sb-Te Thermoelectric Material by the Plasma Arc Discharge Process

  • Lee, Gil-Geun (Division of Materials Science & Engineering, Pukyong National University) ;
  • Lee, Dong-Youl (Division of Materials Science & Engineering, Pukyong National University) ;
  • Ha, Gook-Hyun (Division of Powder Materials, Korea Institute of Materials Science)
  • Published : 2011.04.20

Abstract

The present study focused on the synthesis of Bi-Sb-Te-based ultrafine powder by way of the plasma arc discharge process. The DC arc current of the plasma arc was changed. The chemical composition, phase structure, and particle size of the synthesized powders were analyzed using XRF, XRD, XPS and FE-SEM. The synthesized powders were sintered by the spark plasma sintering method. The thermoelectric property of the sintered body was evaluated by measuring the electrical resistivity, Seebeck coefficient, and thermal conductivity. The synthesized Bi-Sb-Te-based powders had chemical compositions that differed from the raw material, $Bi_{10}Sb_{30}Te_{60}$. The chemical compositions of the synthesized Bi-Sb-Te-based powders approached the raw material as the DC arc current increased. The synthesized $Bi_{12}Sb_{28}Te_{60}$ powder had a mixed phase structure of the $Bi_{0.5}Sb{1.5}Te_3$, $Bi_2Te_3$, $Sb_2Te_3$, and Te phases. The particle size of the powder was less than 500 nm. The sintered body of the $Bi_{12}Sb_{28}Te_{60}$ ultrafine powder synthesized by way of the plasma arc discharge process showed p-type thermoelectric characteristics.

Keywords

References

  1. Y. Sakka and S. Ohno, Appl. Surf. Sci. 100-101, 232 (1996).
  2. H. Li, H. Yang, G. Zou, and S. Yu, Adv. Mater. 9, 156 (1997). https://doi.org/10.1002/adma.19970090214
  3. P. M. Kumar, C. Balasubramanian, N. D. Sali, S. V. Bhoraska, V. K. Rohatgi, and S. Badrinarayanan, Mater. Sci. Eng. B63, 215 (1999).
  4. F. Brochin, X. Devaux, and H. Scherrer, Nano. Mater. 11, 1 (1999). https://doi.org/10.1016/S0965-9773(98)00155-X
  5. S. Ohno, H. Okuyama, and Y. Sakka, J. Japan. Soc. Powder Powder Metall. 51, 777 (2004). https://doi.org/10.2497/jjspm.51.777
  6. G. G. Lee and W. Y. Kim, Met. Mater. Int. 11, 177 (2005). https://doi.org/10.1007/BF03027463
  7. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed., p. 114-155, Pergamon Press, New York (1979).
  8. C. B. Vining, Nature 413, 577 (2001). https://doi.org/10.1038/35098159
  9. B. C. Sales, Science 295, 1248 (2002). https://doi.org/10.1126/science.1069895
  10. H. Scherrer and S. Scherrer, CRC Handbook of Thermoelectrics (ed., D. M. Rowe), p. 211-237, CRC Press, New York (1995).
  11. A. M. Rao, X. Ji, and T. M. Tritt, MRS Bull. 31, 218 (2006). https://doi.org/10.1557/mrs2006.48
  12. B. Poudel, Q. Hao, J. Liu, and M. S. Dresselhaus, Science320, 634 (2008). https://doi.org/10.1126/science.1156446
  13. Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Z. Ren, Nano Lett. 8, 2580 (2008). https://doi.org/10.1021/nl8009928
  14. J. J. Ritter and P. Maruthamuthu, Inorg. Chem. 34, 4278 (1995). https://doi.org/10.1021/ic00120a040
  15. J. J. Ritter and P. Maruthamuthu, Inorg. Chem. 36, 260 (1997). https://doi.org/10.1021/ic960616i
  16. Y. Xu, Z. Ren, W. Ren, K. Deng, and Y. Zhong, Mater. Lett.62, 763 (2008). https://doi.org/10.1016/j.matlet.2007.06.064
  17. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed., p. 258-413, Pergamon Press, New York (1979).
  18. K. Uemura and I. Nishida, Thermoelectric Semiconductor and its Application, p. 13-38, Nikkankougyo Shinbunsya, Tokyo (1985).
  19. K. T. Kim, K. J. Kim, and G. H. Ha, Electron. Mater. Lett.6, 177 (2010). https://doi.org/10.3365/eml.2010.12.177
  20. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, J. Crystal Growth 277, 258 (2005). https://doi.org/10.1016/j.jcrysgro.2004.12.144

Cited by

  1. Bi-Te계 열전소재 연구 동향 vol.52, pp.1, 2015, https://doi.org/10.4191/kcers.2015.52.1.1
  2. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride vol.8, pp.14, 2011, https://doi.org/10.1002/cssc.201403485
  3. Structure and Thermoelectric Properties of Te-Ag-Ge-Sb (TAGS) Materials Obtained by Reduction of Melted Oxide Substrates vol.45, pp.2, 2011, https://doi.org/10.1007/s11664-015-4251-1