DOI QR코드

DOI QR Code

On the X-Ray Reflectivity by Poly Allyl Diglycol Carbonate (PADC)

  • Ghazaly, M. El (Department of Physics, Faculty of Science, Zagazig University)
  • Published : 2011.07.15

Abstract

X-ray reflectivity via the poly allyl diglycol carbonate (CR-39 polymer sheet) was investigated. X-ray reflectivity was measured for a pristine and a chemically etched CR-39 detector in 6.25N NaOH at $(70\;{\pm}\;0.5)^{\circ}C$ for different durations. Far from the spectral peak, the reflectivity of the CR-39 polymer sheet has a wide peak at $2{\theta}\;=\;20.1^{\circ}$, and its intensity is decreased by increasing the etching time. Moreover, the integrated counts under the peaks, $C(t_e)$, vary linearly as a function of the etching time $t_e$. Data are fitted using a linear function $C(t_e)\;=\; A\;+\;Bt_e$, with fitting parameters $A\;=\;(3271\;{\pm}\;170)\;and\;B\;=\;(-960\;{\pm}\;84)$. The reflectivity deterioration is attributed to the increase of CR-39 surface's roughness due to the chemical etching. The rocking curves of X-ray reflectivity were measured for a pristine and an etched CR-39 polymer sheet. Specular reflections are observed, as well as Yoneda wings, which broaden and move away from the specular reflections due to the increase in the CR-39 surface's roughness.

Keywords

References

  1. K. Inoue, A. Kitahara, K. Matsushita, H. Kikkawa, F. Nakabayashi, N. Ageishi, H. Terauchi, O. skata and I. Takahashi, Surf. Interface Anal. 37, 185 (2005). https://doi.org/10.1002/sia.1960
  2. A. Gibaud and J. Daillant, X-Ray and Neutron Reflectivity: Principles and Applications (Springer-Verlag, New York, 1999), p. 85.
  3. S. K. Sinha, E. B. Sirota and S. Garoff, Phys. Rev. B 38, 2297 (1987).
  4. J. P. Schlomka, M. Tolan, L. Schwalowski, O. H. Seeck, J. Stettner and W. Press, Phys. Rev. B 51, 2311 (1995). https://doi.org/10.1103/PhysRevB.51.2311
  5. S. A. Durrani and R. K. Bull, Solid State Nuclear Track Detection (Pergamon Press, Oxford, 1987).
  6. D. Nikezic and K. N. Yu, Mater. Sci. Eng. 46, 51 (2004), and references therein. https://doi.org/10.1016/j.mser.2004.07.003
  7. K. F. Chan, B. M. F. Lau, D. Nikezic, A. K. W. Tse, W. F. Fong and K. N. Yu, Nucl. Instrum. Methods Phys. Res., Sect. B 263, 290 (2007). https://doi.org/10.1016/j.nimb.2007.04.149
  8. K. Stoev and K. Sakurai, Rigaku J. 14, 22 (1997.
  9. M. El-Ghazaly, H. Backe, W. Lauth, G. Kube, P. Kunz, A. Sharafutdinov and T. Weber, Eur. Phys. J. A. 28, 197 (2006). https://doi.org/10.1140/epja/i2006-09-021-6
  10. B. A. L. G. De Peralta, Thin Film Characterization by XRay Reflectivity (Dissertation in Electrical Engineering Faculty, Texas Tech University, 2000).
  11. B. L. Henke, E. M. Gullikson and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993), available at http://henke.lbl.gov/optical−constants. https://doi.org/10.1006/adnd.1993.1013
  12. F. Malik, E. U. Khan, I. E. Qureshi, S. N. Husaini, M. Sajid, S. Karim and K. Jamil, Radiat. Meas. 35, 301 (2002). https://doi.org/10.1016/S1350-4487(02)00053-7
  13. Y. Yoneda, Phys. Rev. 131, 2010 (1963). https://doi.org/10.1103/PhysRev.131.2010
  14. K. C. C. Tse, Investigations of the Effects of UV Irradiation on the Etching Behavior of CR-39 Solid State Nuclear Track Detector (City University of Hong Kong, 2007.

Cited by

  1. Study of the optical properties and the carbonaceous clusters in thermally-annealed CR-39 and Makrofol-E polymer-based solid-state nuclear track detectors vol.60, pp.7, 2011, https://doi.org/10.3938/jkps.60.1043
  2. Comparison between different models for alpha-particle range determination and a new approach to CR-39 detector vol.61, pp.3, 2012, https://doi.org/10.3938/jkps.61.336
  3. Characterization of saturation of CR-39 detector at high alpha-particle fluence vol.50, pp.3, 2011, https://doi.org/10.1016/j.net.2017.11.010