DOI QR코드

DOI QR Code

Uranium and Radon Concentrations in Groundwater near the Icheon Granite

이천 화강암지역 지하수의 우라늄과 라돈 함량 특성

  • Cho, Byong-Wook (Groundwater Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Choo, Chang-Oh (Department of Earth and Environmental Sciences, Andong National University) ;
  • Kim, Moon-Su (Soil and Groundwater Research Team, National Institute of Environmental Research) ;
  • Lee, Young-Joon (Soil and Groundwater Research Team, National Institute of Environmental Research) ;
  • Yun, Uk (Groundwater Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Byeong-Dae (Groundwater Department, Korea Institute of Geoscience and Mineral Resources)
  • 조병욱 (한국지질자원연구원 지구환경연구본부) ;
  • 추창오 (안동대학교 지구환경과학과) ;
  • 김문수 (국립환경과학원 토양지하수연구팀) ;
  • 이영준 (국립환경과학원 토양지하수연구팀) ;
  • 윤욱 (한국지질자원연구원 지구환경연구본부) ;
  • 이병대 (한국지질자원연구원 지구환경연구본부)
  • Received : 2011.08.17
  • Accepted : 2011.09.19
  • Published : 2011.09.30

Abstract

Concentrations of uranium (U) and radon (Rn) were measured in groundwater from 74 wells in the Icheon area, with the aim of determining the range and distribution of concentrations in an area underlain by granite (in this case, the Icheon granite). U concentrations ranged from 0.02 to 1,640.0 ${\mu}g/L$ (median value, 2.03 ${\mu}g/L$) and Rn concentrations ranged from 40 to 23,400 pCi/L (median value, 4,649 pCi/L). U concentrations in 10.8% of the samples exceeded 30 ${\mu}g/L$, which is the maximum contaminant level (MCL) proposed by the US Environmental Protection agency (EPA), based on the chemical toxicity of U. In addition, U concentrations in 59.5% and 13.5% of the samples exceeded 4,000 pCi/L (the Alternative MCL (AMCL) of the US EPA) and 8,100 pCi/L (Finland’s guideline level), respectively. We found no significant correlations between U (Rn) and other constituents, except for U-$HCO_3$ (correlation coefficient of 0.71), U-Ca (0.69), U-Li (0.45), U-Sr (0.43), and U-F (0.42). U and Rn contents in the groundwater are low relative to those in areas in other countries with similar geological settings, possibly due to the inflow of shallow groundwater to the wells in the Icheon area.

국내 화강암지역 지하수의 우라늄과 라돈 함량의 범위와 특성 파악을 위하여 이천지역 74개 지하수를 조사한 결과 우라늄 함량은 $0.02{\sim}1,640.0\;{\mu}g/L$ (중앙값 2.03 ${\mu}g/L$), 라돈 함량은 40~23,400 pCi/L (중앙값 4,649 pCi/L)으로 나타났다. 74개 지하수 중 8개인 10.8%에서 미국 EPA의 우라늄 기준치(30 ${\mu}g/L$)를 초과하였다. 라돈은 44개인 59.5%에서 미국의 음용 제안치(AMCL)인 4,000 pCi/L를 초과하였고 핀란드의 음용 제안치인 8,100 pCi/L를 초과하는 시료는 전체의 13.5%인 10개이다. U-$HCO_3$ (0.71), U-Ca (0.69), U-Li (0.45), U-Sr (0.43), U-F (0.42)를 제외하고는 우라늄(라돈)과 주요 성분간의 상관성은 없는 것으로 나타났다. 연구지역 지하수의 우라늄과 라돈 함량은 유사한 지질을 가지는 외국에 비교하면 낮은 것으로 나타났는데, 이는 천부 지하수의 공내 유입으로 인해서 실제 함량보다 낮게 검출되었을 가능성이 크다.

Keywords

References

  1. Asikainen, M. and Kahlos, H., 1979, Anomalously high concentration of uranium, radium and radon in water from drilled wells in the Helsinki region, Geochimica et Cosmochimica Acta 43, 1681-1686. https://doi.org/10.1016/0016-7037(79)90187-X
  2. Banks, D., Frengstad, B., Midtgard, A.K., Krog, J.R., and Strand, T., 1998, The chemistry of Norweigian groundwaters: The distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters, Science of the Total environment, 222, 71-91. https://doi.org/10.1016/S0048-9697(98)00291-5
  3. Barcelona, M.J., Gibb, J.P., Helfrich, J.A., and Garske, E.E., 1985, Practical guide for groundwater sampling, SWS Contract Report 374, 94.
  4. Betcher, R. N., 1987, Uranium in groundwater of south-eastern Manitoba, Canada. Canadian J. Earth Science, 25, 2089-2103.
  5. Cho, B.W., Sung, I.H., Cho, S.Y., Park, and S.K., 2007, A preliminary investugation of radon concentrations in groundwater of South Korea. Journal of Soil and Groundwater Env., 15, 98-104.
  6. Cho, B.W., Yun, U., and Choo, C.O., 2010a, Natural radon removal efficiency of small-scale water supply system, Journal of Korean Society of Environ. Eng., 43, 33-42.
  7. Cho, B.W., Yun, U., and Choo, C.O., 2010b, Uranium and radon concentration in groundwater of the Taejeon area, Korea, 38th International Association of Hydrogeologists Conference, 61-62.
  8. Choo, C.O., 2002, Characteristics of uraniferous minerals in Daebo granite and significance of mineral species, Journal of Mineral Soc. Korea, 15, 11-21.
  9. Cothern, C.R. and Rebers, P.A., 1990, Radon, radium and uranium in drinking water, Lewis publishers, 283p.
  10. Frengstad, B., Midtgard, A.K., Banks, D., Krog, R.K., Siewers, U., 2000, The chemistry of Norwegian groundwater. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analyzed by ICP-MS techniques, Science of the Total environment, 246, 21-40. https://doi.org/10.1016/S0048-9697(99)00413-1
  11. Geological and Mineral Institute of Korea, 1975, Geological report of the Yeojoo sheet (1:50,000), 12p.
  12. Geological and Mineral Institute of Korea, 1974, Geological report of the Icheon sheet (1:50,000), 15p.
  13. KIER, 1989a, Geological report of the Ansung sheet (1:50,000), 18p.
  14. KIER, 1989b, Geological report of the Changhowon sheet (1:50,000), 17p.
  15. Lee, J.U., Chon, H.T., and John, Y.W., 1997, Geochemical characteristics of groundwater in Korea with different aquifer geology and temperature-comparative study with granitic groundwater. Journal of Soil and Groundwater Env., 4, 212-222.
  16. Lowry, J.D., Hoxie, D.C., and Moreau, E., 1987, Extreme levels of $^{222}Rn$ and U in a private water supply, Proceedings of the NWWA conference, 363-375.
  17. Morland, G., Reimann, C., Strand, T., Skarphagen, H., Banks, D., Bjorvatn, K., Hall, G.E.M., and Siewers, U., 1997, The hydrogeochmeistry of Norwegian bedrock groundwater-selected parameters (pH, F, Th, U, Th, Na, Ca) in samples from Vestfold and Hordaland, Norway, NGU Bull, 432, 103-117.
  18. NIER, 2000, Study on the radionuclides concentrations in the groundwater (2). NIER Report. 323p.
  19. NIER, 2002, Study on the radionuclides concentrations in the groundwater (V), NIER Report, 357p.
  20. NIER, 2006, Study on the radionuclide concentration in the groundwater, NIER Report, 200p.
  21. NIER, 2009, A detailed study of the radionuclide concentration in the groundwater (II), NIER Report, 273p.
  22. Salonen, L. and Hukkanen, H., 1997, Advantages of low-background liquid scintillation alpha-spectrometry and pulse shape analysis in measuring radon, uranium and radium-226 in groundwater samples, J. Radioanalytical and Nuclear Chemistry, 226, 67-74. https://doi.org/10.1007/BF02063626
  23. STUK, 2005, $^{238}U-series$ radionuclides in Finnish ground-water- based drinking water and effective doses, STUK-A123, 94p.
  24. USDI and USGS, 2007, Occurrence of uranium and radon in glacial and bedrock aquifers in the northern United States, 1993-2003, scientific investigation report 2007-5037, 85p.
  25. Wathen, J.B., 1987, The effect of uranium sitting in two-mica granites on uranium concentrations and radon activity in groundwater, Proceedings of the NWWA conference, 31-45p.

Cited by

  1. Hydrogeochemical Characteristics, Occurrence, and Distribution of Natural Radioactive Materials (Uranium and Radon) in Groundwater of Gyeongnam and Gyeongbuk Provinces vol.24, pp.4, 2014, https://doi.org/10.9720/kseg.2014.4.551
  2. Characteristics of Occurrence and Distribution of Natural Radioactive Materials, Uranium and Radon in Groundwater of the Danyang Area vol.23, pp.4, 2013, https://doi.org/10.9720/kseg.2013.4.477
  3. Study on Temporal Decay Characteristics of Naturally Occurring Radionuclides in Groudwater in Two Mica Granite Area vol.18, pp.4, 2013, https://doi.org/10.7857/JSGE.2013.18.4.019
  4. Research Status and Roles of Natural Analogue Studies in the Radioactive Waste Disposal vol.11, pp.2, 2013, https://doi.org/10.7733/jkrws.2013.11.2.133
  5. Spatial relationships between radon and topographical, geological, and geochemical factors and their relevance in all of South Korea vol.74, pp.6, 2015, https://doi.org/10.1007/s12665-015-4526-0
  6. Environmental Characteristics of Natural Radionuclides in Groundwaters in Volcanic Rock Areas: Korea vol.18, pp.1, 2013, https://doi.org/10.7857/JSGE.2013.18.1.036
  7. Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS vol.305, pp.2, 2015, https://doi.org/10.1007/s10967-015-3971-2
  8. Hydrochemistry and Distribution of Uranium and Radon in Groundwater of the Nonsan Area vol.22, pp.4, 2012, https://doi.org/10.9720/kseg.2012.4.427
  9. Hydrogeochemistry and Occurrences of Uranium and Radon in Groundwater of in Chungwon, Korea vol.27, pp.8, 2018, https://doi.org/10.5322/JESI.2018.27.8.651
  10. 국내 변성암 지역 음용지하수 중 자연방사성물질(238U, 222Rn)의 환경 특성 연구 vol.18, pp.3, 2011, https://doi.org/10.7857/jsge.2013.18.3.082
  11. 경북지역의 먹는 물에서 우라늄 검출 특성 vol.27, pp.4, 2014, https://doi.org/10.9727/jmsk.2014.27.4.235
  12. 괴산지역 지하수의 라돈 함량 vol.22, pp.5, 2011, https://doi.org/10.7857/jsge.2017.22.5.063
  13. 전라남도 일대 지하수 중에서 산출하는 자연방사성물질 우라늄과 라돈의 수리지구화학적 거동특징 vol.27, pp.4, 2011, https://doi.org/10.9720/kseg.2017.4.501
  14. 문경지역 지하수의 수리지화학 및 우라늄과 라돈의 산출 특성 vol.51, pp.6, 2011, https://doi.org/10.9719/eeg.2018.51.6.553
  15. Meta-analysis Study on Microenvironmental Characteristics of Radon Concentration in Korea vol.46, pp.3, 2020, https://doi.org/10.5668/jehs.2020.46.3.245
  16. A Study on the Characteristics of Indoor Radon Concentration in Water Curtain Cultivation Facilities vol.24, pp.2, 2011, https://doi.org/10.36278/jeaht.24.2.84
  17. Efficient radon removal using fluorine-functionalized natural zeolite vol.233, pp.None, 2011, https://doi.org/10.1016/j.jenvrad.2021.106607