DOI QR코드

DOI QR Code

A Study of the Reaction Characteristics on Hydrocarbon Selective Catalytic Reduction of NOx Over Various Noble Metal Catalysts

다양한 귀금속 촉매를 이용한 NOx의 탄화수소 선택적촉매환원 반응 특성에 관한 연구

  • Kim, Sung-Su (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Jang, Du-Hun (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Hong, Sung-Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 김성수 (경기대학교 환경에너지시스템공학과) ;
  • 장두훈 (경기대학교 환경에너지시스템공학과) ;
  • 홍성창 (경기대학교 환경에너지시스템공학과)
  • Received : 2011.05.23
  • Accepted : 2011.07.27
  • Published : 2011.09.30

Abstract

Characteristics of hydrocarbon selective catalytic reduction of NOx using various noble metal catalysts were investigated. The best active metal is Pt, supports are $CeO_2$ and $TiO_2$ by strong interactions between active metals, and 55% of conversion rate of NOx is shown. Pd, Rh and Ag catalysts presented a conversion of less than 20% as active metals, and supports also showed the poor activity compared to $SiO_2$ and $ZrO_2$. Experiments were performed with different types of reducing agents, amount, concentration of oxygen and space velocity in order to investigate the performance of catalysts according to operating conditions. The results confirm that the methane is better than propane as a reducing agent, and as the ratio of methane/nitrogen oxide increases, the catalytic activity increased, as the concentration of oxygen increases and space velocity decreases, the performance of catalysts increased.

다양한 귀금속 촉매를 이용한 hydrocarbon selective catalytic reduction 반응특성을 조사하였다. 가장 우수한 활성금속은 Pt, 지지체는 활성금속과 지지체간 강한 상호작용에 의하여 $CeO_2$, $TiO_2$였으며, NOx 전환율은 약 55%를 나타내었다. 활성금속으로서 Pd, Rh, Ag 촉매들은 20% 미만의 전환율을 보였으며, 지지체로서 $SiO_2$, $ZrO_2$ 또한 다른 지지체들보다 저조한 활성을 나타내었다. 조업조건에 따른 촉매의 성능을 조사하기 위하여 환원제의 종류, 양, 산소농도, 공간속도에 따른 실험을 수행하였다. 환원제로서 메탄이 프로판보다 우수함을 확인하였고, 메탄/질소 산화물 비가 증가할수록 성능이 우수하였으며, 산소농도가 증가할수록, 그리고 공간속도가 감소할수록 촉매의 성능은 증가함을 확인할 수 있었다.

Keywords

References

  1. Lee, J. W., Jeon H. J., and Hong, S. C., "Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor," Clean Technology, 15(2), 130-136 (2009).
  2. Ministry of Environment Republic of Korea, Environmental Statistics Yearbook in 2002 (2003).
  3. Kim, J. I., Chang, I. G., and Seon, C. Y., "Process Design and Performance Test of the SCR Pilot Plant," Clean Technology, 9(2), 71-79 (2003).
  4. Kim, S. S., Choi, H. J., and Hong, S. C., "A Study on Reaction Characteristics of $H_2$ SCR using $Pt/TiO_2 $Catalyst," Appl. Chem. Eng., 21(1), 18-23 (2010).
  5. Kim, S. S., and Hong, S. C., "The Effect of CO in the Flue Gas on $H_2$ SCR," Appl. Chem. Eng., 21(4), 391-395 (2010).
  6. Tabata, T., Kokitsu, M., and Okada, O., "Relationship Between Methane Adsorption and Selective Catalytic Reduction of Nitrogen-Oxide by Methane on Gallium and Indium Ion- Exchanged ZSM-5," Appl. Catal. B Environ., 6, 225-236 (1995). https://doi.org/10.1016/0926-3373(95)00016-X
  7. Sadykov, V., Baron, S., Matyshak, V., Alikina, G., Bunina, R., Rozovskii, A., Lunin, V., Lunina, E., Kharlanov, A., and Ivanova, A., "A Role of Surface Nitrite and Nitrate Complexes in NOx Selective Catalytic Reduction by Hydrocarbons under Oxygen Excess," Catal. Lett., 37, 157-162 (1996). https://doi.org/10.1007/BF00807747
  8. Iwamoto, M., and Hamada, H., "Removal of Nitrogen Monoxide from Exhaust Gases through Novel Catalytic 67. Processes," Catal. today, 10, 57-71 (1991). https://doi.org/10.1016/0920-5861(91)80074-J
  9. Lee, J. Y., and Hong, S. C., "Selective Catalytic Reduction of NO using Methane over Metal Oxide Catalysts," Appl. Chem. Eng., 13(5), 450-456 (2002).
  10. Li, Z., and Flytzani-Stephanopoulos, M., "Cu-Cr-O and Cu- Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization," Ind. Eng. Chem. Res., 36, 187-196 (1997). https://doi.org/10.1021/ie960245d
  11. Li, Y., and Armor, J., "Catalytic Combustion of Methane over Palladium Exchanged Zeolites," Appl. Catal. B Environ., 3, 275-282 (1994). https://doi.org/10.1016/0926-3373(94)0006Z-H
  12. Li, Y., and Armor, J., "Selective $NH_3$ Oxidation to $N_2$ in a Wet Stream," Appl. Catal. B Environ., 13, 131-139 (1997). https://doi.org/10.1016/S0926-3373(96)00098-7
  13. Campa, M., De Rossi, S., Ferraris, G., and Indovina, V., "Talytic Activity of Co-ZSM-5 for the Abatement of NOx with Methane in the Presence of Oxygen," Appl. Catal. B Environ., 8, 315-331 (1996). https://doi.org/10.1016/0926-3373(95)00072-0
  14. Maisuls, S., Seshan, K., Feast, S., and Lercher, J., "Selective Catalytic Reduction of NOx to Nitrogen over Co-Pt/ZSM-5 - Part A. Characterization and Kinetic Studies," Appl. Catal. B Environ., 29, 69-81 (2001). https://doi.org/10.1016/S0926-3373(00)00194-6
  15. Descorme, C., Gelin, P., Lecuyer, C., and Primet, M., "Skeletal Isomerization of Hexane over Pt/H-beta Zeolites : Is the Classical Mechanism Correct?," J. Catal., 177, 352-362 (1998). https://doi.org/10.1006/jcat.1998.2112
  16. Fritz, A., and Pitchon, V., "The Current State of Research on Automotive Lean NOx Catalysis," Appl. Catal. B: Environ., 13, 1-25 (1997). https://doi.org/10.1016/S0926-3373(96)00102-6
  17. Han, M. S., Yun, C. Y., and Lee, J. Y., "Synthesis of Visibleworking Pt-C-$TiO_2$ Photocatalyst for the Degradation of Dye Wastewater," Clean Technology, 11(3), 123-128 (2005).
  18. Kim, S. S., Lee, S. J., and Hong, S. C., "Effect of $CeO_2$ Addition to Rh/$Al_2O_3$ Catalyst on $N_2O$ Decomposition," Chem. Eng. J., 169, 173-179 (2011). https://doi.org/10.1016/j.cej.2011.03.001
  19. Gonzalez, I. D., Navarro, R. M., Wen, W., Marinkovic, N., Rodriguez, J. A., Rosa, F., and Fierro, J. L. G., "Low Temperature Water Gas Shift Reaction over Platinum Supported on$CeO_2$, $TiO_2$ and$ CeO_2-TiO_2$," Catal. Today, 149, 372-379 (2010). https://doi.org/10.1016/j.cattod.2009.07.100
  20. Bueno-Lopez, A., Such-Basanaz, I., and Salinas-Martinez de Lecea, C., "Stabilization of Active $Rh_2O_3$ Species for Catalytic Decomposition of $N_2O$ on La-, Pr-doped $CeO_2$," J. Catal., 244, 102-112 (2006). https://doi.org/10.1016/j.jcat.2006.08.021
  21. Panagiotopoulou, P., and Kondarides, D. I., "Effects of Promotion of $TiO_2$ with Alkaline Earth Metals on the Chemisorptive Properties and Water-gas Shift Activity of Supported Platinum Catalysts," Appl. Catal. B., 101, 738-746 (2011). https://doi.org/10.1016/j.apcatb.2010.11.016
  22. Hightower, J. W., Van Leirsburg, D. A., Kimilish, R. L., and Larson, J. G. (Eds.), The Catalytic Chemistry of Nitrogen Oxides, Plenum Press, New York, 1975.
  23. Gervasini, A., Carniti, P., and Ragaini, V., "Studies of Direct Decomposition and Reduction of Nitrogen Oxide with Ethylene by Supported Noble Metal Catalysts," Appl. Catal. B: Environ., 22, 201-213 (1999). https://doi.org/10.1016/S0926-3373(99)00053-3
  24. Burch, R., and Watling, T. C., "Adsorbate-assisted NO Decomposition in NO Reduction by $C_3H_6$ over Pt/$Al_2O_3$ Catalysts under Lean-burn Conditions," Catal. Lett., 37, 51-55 (1996). https://doi.org/10.1007/BF00813519
  25. Yentekakis, I. V., Lambert, R. M., Tikhov, M. S., Konsolakis, M., and Kiousis, V., "Promotion by Sodium in Emission Control Catalysis : A Kinetic and Spectroscopic Study of the Pdcatalyzed Reduction of NO by Propene," J. Catal., 176, 82-92 (1998). https://doi.org/10.1006/jcat.1998.2041
  26. Shimizu, K., Satsuma, A., and Hattori, T., "Catalytic Performance of Ag-$Al_2O_3$ Catalyst for the Selective Catalytic Reduction of NO by Higher Hydrocarbons," Appl. Catal. B: Environ., 25, 239-247 (2000). https://doi.org/10.1016/S0926-3373(99)00135-6
  27. Li, Y., and Armor, J., "Catalytic Reduction of Nitrogen Oxides with Methane in the Presence of Excess Oxygen," Appl. Catal. B: Environ., 1, L31-L40 (1992). https://doi.org/10.1016/0926-3373(92)80050-A
  28. Pinaeva, L. G., Sadovskaya, E. M., Suknev, A. P., Goncharov, V. B., Sadykov, V. A., Balzhinimaev, B. S., camp. T. D,. and Mirodatos, C., "On the Oxygen Effect in Nitric Oxide Reduction by Methane over Co/ZSM-5," Chem. Eng. Sci., 54, 4327-4335 (1999). https://doi.org/10.1016/S0009-2509(99)00104-9