DOI QR코드

DOI QR Code

Prediction of Compression Index of Busan and Inchon Clays Considering Sedimentation State

부산과 인천점토의 퇴적상태를 고려한 압축지수 추정

  • 홍성진 (고려대학교 건축.사회환경공학부) ;
  • 김동휘 (SK건설) ;
  • 최영민 (고려대학교 건축.사회환경공학부) ;
  • 이우진 (고려대학교 건축.사회환경공학부)
  • Received : 2011.03.07
  • Accepted : 2011.09.19
  • Published : 2011.09.30

Abstract

The compression index, which represents the compressibility of clay, is generally obtained from the consolidation test, or has been predicted by empirical correlations with soil properties. In this study, the results of consolidation tests on natural and reconstituted Busan and Inchon clays are analyzed to figure out the sedimentation state and its effect on empirical correlations. Results of analysis show that the void index of Busan clay is higher than SCL while the void index of Inchon clay is lower than SCL. By comparing prediction errors with ${\Delta}e_r$, which represents the sedimentation state of clay, it is shown that errors predicting the compressibility based on the liquid limit and plasticity index decrease as ${\Delta}e_r$ increases. Supplemented correlations predicting the compression index of Busan and Inchon clays are suggested using these relationships.

압축지수는 점토의 압축특성을 나타내는 대표적인 물성치로, 압밀시험을 통해 직접 결정하거나 기본 물성으로부터 경험적으로 추정한다. 본 연구에서는 부산 및 인천점토의 퇴적상태를 파악하고 이것이 압축지수 추정식에 미치는 영향에 분석하였다. 이를 위해 부산 및 인천 점토의 재성형점토 압밀시험을 수행하고 자연점토 압밀시험 결과를 분석하였다. 분석결과 부산점토는 SCL보다 높은 간극지수를, 인천점토는 SCL보다 낮은 간극지수를 나타냈다. 퇴적상태를 나타내는 ${\Delta}e_r$을 압축지수 추정오차와 비교한 결과 액성한계 및 소성지수로 추정한 압축지수의 추정오차는 ${\Delta}e_r$이 증가함에 따라 감소하는 경향이 나타났다. 본 연구에서는 이러한 관계를 이용하여 부산 및 인천점토의 압축지수를 보다 정확히 추정할 수 있는 방법을 제안하였다.

Keywords

References

  1. 김동휘, 안산환, 김재정, 이우진 (2009), "인천 송도지역 지반의 변동성 분석", 한국지반공학회논문집, 제25권 제6호, pp.73-88.
  2. 김상규, 김윤태 (2006), "낙동강 하구 델타 퇴적토의 특성과 기초 설계와의 관련", 낙동강하구 연약지반에서의 중.저층 빌딩의 최적 기초형식에 관한 Workshop 논문집, ATC-7, Seoul, Korea, pp.19-101.
  3. 정성교, 곽정민, 장우영, 김덕곤 (2002), "낙동강 하구점토의 압축 특성에 관한 연구", 한국지반공학회논문집, 제18권 제4호, pp.295-307.
  4. 정성교, 장우영, Ninjgarav, E., 류춘길 (2006), "낙동강 하구지역 부산점토의 퇴적환경에 따른 압축특성", 한국지반공학회논문집, 제22권 제12호, pp.57-65.
  5. 홍성진, 이문주, 김태준, 이우진 (2009), "간극수압비를 이용한 부산점토의 CPTu 콘 계수 추정", 한국지반공학회논문집, 제25권 제1호, pp.77-88.
  6. Azzouz, A. S., Krizek, R. J. and Corotis, R. B. (1976), "Regression analysis of soil compressibility", Soils and Foundations, Vol.16, pp.19-29.
  7. Burland, J. G. (1990), "On compressibility and shear strength of natural clay", Geotechnique, Vol.40, pp.329-378.
  8. Chandler, B. J. (2000), "Clay sediments in depositional basins: the geotechnical cycle", J. Engineering Geology and Hydrogeology, Vol.33, No.3, pp.7-39. https://doi.org/10.1144/qjegh.33.1.7
  9. Chung, S. G., Giao, P. H., Kim, G. J. and Leroueil, S. (2002), "Geotechnical properties of Pusan clay", Canadian Geotechnical Journal, Vol.39, pp.1050-1060. https://doi.org/10.1139/t02-055
  10. Cozzolino, V. M. (1961), "Statistical forecasting of compression index", Proc. 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, France, Vol.1, pp.51-53.
  11. Herrero, O. R. (1983), "Universal compression index equation; Closure", J. Geotechnical Engineering, ASCE, Vol.109, No.5, pp.755-761. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(755)
  12. Hong, Z. (2006), "Correlating compression properties of sensitive clays using void index", Geotechnique, Vol.56, pp.573-577. https://doi.org/10.1680/geot.2006.56.8.573
  13. Koppula, S. D. (1981), "Statistical estimation of compression index", Geotechnical Testing Journal, ASTM, Vol.4, No.2, pp.68-73. https://doi.org/10.1520/GTJ10768J
  14. Leroueil, S. (1988), "Tenth Canadian geotechnical colloquium: Recent developments in consolidation of natural clays", Canadian Geotechnical Journal, Vol.25, pp.85-107. https://doi.org/10.1139/t88-010
  15. Liu, M. D. and Carter, J. P. (1999), "Virgin compression of structured soil", Geotechnique, Vol.49, pp.43-57. https://doi.org/10.1680/geot.1999.49.1.43
  16. Locat, J. and Tanaka, H. (1999), "Microstructure, mineralogy and physical properties; techniques and application to the Busan clays", Proc. KSG'99 Dredging and Geoenvironmental Conference, Seoul, pp.15-31.
  17. Mayne, P. W. (1980), "Cam-clay prediction of undrained strength", J. Geotechnical Engineering, ASCE, Vol.106, No.11, pp.1219-1242.
  18. Nacci V. A., Wang, M.C. and Demars, K. R. (1975), "Engineering behavior of calcareous soils", Proc. Civil Engineering in the Oceans III, Newark, Vol.1, pp.380-400.
  19. Nagaraj, T. S. and Miura, N. (2001), Soft clay behaviour - analysis and assessment, Balkema, Rotterdam.
  20. Nagaraj, T. S. and Srinivasa Murthy, B. R. (1983), "Rationalization of Skempton's compressibility equation", Geotechnique, Vol.33, pp.433-443. https://doi.org/10.1680/geot.1983.33.4.433
  21. Nagaraj, T. S. and Srinivasa Murthy, B. R. (1986), "A critical reappraisal of compression index equations", Geotechnique, Vol.36, pp.27-32. https://doi.org/10.1680/geot.1986.36.1.27
  22. Nagaraj, T. S., Srinivasa Murthy, B. R., Vatsala, A. and Joshi, R. C. (1990), "Analysis of compressibility of sensitive soils", J. Geotechnical Engineering, ASCE, Vol.116, No.1, pp.105-119. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:1(105)
  23. Nakase, A., Kamei, T. and Kusakabe, O. (1988), "Constitutive parameters estimated by plasticity index", J. Geotechnical Engineering, ASCE, Vol.114, No.7, pp.844-858. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:7(844)
  24. Nishida, Y. (1956), "A brief note on Compression index of soil", J. Soil Mechanics and Foundation Engineering, ASCE, Vol.82, No.3, pp.1-14.
  25. Park, J. H. and Koumoto, T. (2004), "New compression index equation", J. Geotechnical and Geoenvironmental Engineering, ASCE, Vol.130, No.2, pp.223-226. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(223)
  26. Parry, R. H. G. (1960), "Triaxial compression and extension tests on remoulded saturated clay", Geotechnique, Vol.10, pp.166-180. https://doi.org/10.1680/geot.1960.10.4.166
  27. Roscoe, H. H., Schofield, A. N. and Worth, C. P. (1958), "On yielding of soils", Geotechnique, Vol.8, pp.22-53. https://doi.org/10.1680/geot.1958.8.1.22
  28. Shouka, H. (1964), "Relationship of compression index and liquid limit of alluvial clay", Proc. 19th Japan Civil Engineering Conf., Touhoku, Vol.4, pp.40.1-40.2.
  29. Sridharan, A. and Nagaraj, H. B. (2000), "Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties", Canadian Geotechnical Journal, Vol.37, pp.712-722. https://doi.org/10.1139/t99-128
  30. Skempton, A. W. (1944), "Notes on the compressibility of clays", Q. J. Geological Society of London, Vol.100, pp.119-135. https://doi.org/10.1144/GSL.JGS.1944.100.01-04.08
  31. Schmertmann, J. H., (1955), "The undisturbed consolidation behavior of clay", Trans. ASCE, Vol.120, pp.1201-1233.
  32. Sowers, G. B. (1970), Introductory soil mechanics and foundation (3rd ed.), The Macmillan company, London, UK.
  33. Terzaghi, K. and Peck, R. B. (1967), Soil mechanics in engineering practice, John Wiley & Sons Inc., New York.
  34. Worth, C. P. and Wood, D. M. (1978), "The correlation of index properties with some basic engineering properties of soils", Canadian Geotechnical Journal, Vol.15, pp.137-145. https://doi.org/10.1139/t78-014
  35. Yoon, G. L., Kim, B. T. and Jeon, S. S. (2004), "Empirical correlations of compression index for marine clay from regression analysis", Canadian Geotechnical Journal, Vol.41, pp.1213-1221. https://doi.org/10.1139/t04-057

Cited by

  1. Closure to “Index Test Method for Estimating the Effective Preconsolidation Stress in Clay Deposits” by Karim Kootahi and Paul W. Mayne vol.143, pp.10, 2017, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001765
  2. Evaluation of compression index of marine fine-grained soils by the use of index tests vol.35, pp.4, 2017, https://doi.org/10.1080/1064119X.2016.1213775
  3. 재성형점토의 압축특성을 이용한 자연점토의 압축지수 추정 vol.29, pp.3, 2011, https://doi.org/10.7843/kgs.2013.29.3.5
  4. 서해안 점토의 물리적 특성과 압밀정수의 상관성 vol.16, pp.4, 2015, https://doi.org/10.14481/jkges.2015.16.4.33