DOI QR코드

DOI QR Code

p-type Conduction in ZnO Nanowire Schottky Field-effect Transistors with Pt Metal Electrodes

  • Jeong, Du-Won (Department of Physics and Institute of Physics and Chemistry, Chonbuk National University) ;
  • Kim, Ju-Jin (Department of Physics and Institute of Physics and Chemistry, Chonbuk National University) ;
  • Lee, Jeong-O (Advanced Material Division, Korea Research Institute of Chemical Engineering)
  • Published : 2011.11.15

Abstract

To obtain p-type conduction in a ZnO nanowire, field effect transistors were fabricated from a short ZnO nanowire with Pt contact electrodes. Since Pt metal has a high work function and is chemically inert, the Fermi level can align with the valence band side of the ZnO nanowire in such a way as to produce a high Schottky barrier. The current-voltage characteristics showed a non-linear behavior due to the high Schottky barrier between the ZnO nanowire and the Pt, and the gate transfer curves exhibited a weak p-type conduction behavior. To further enhance the hole conduction in the ZnO nanowire channel, we exposed the devices to $F_2$ gas, which is effective at capturing electrons. The $F_2$ adsorbed onto the ZnO FET and improved the hole conduction behavior relative to that of the intrinsic ZnO FET. A p-type gate response was obtained in the high source-drain bias voltage region.

Keywords

References

  1. S. J. Tans, A. R. M. Verschueren and C. Dekker, Nature 393, 49 (1998). https://doi.org/10.1038/29954
  2. Y. Cui, X. Duan, J. Hu and C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000).
  3. D. J. Norris, A. L. Efros and S. C. Erwin, Science 319, 1776 (2008). https://doi.org/10.1126/science.1143802
  4. C. H. Park, S. B. Zhang and S.-H. Wei, Phys. Rev. B 66, 073202 (2002).
  5. M. Diarra,Y.-M. Niquet, C. Delerue and G. Allan, Phys. Rev. B 75, 045301 (2007).
  6. M. T. Bjork, H. Schmid, J. Knoch, H. Riel and W. Riess, Nat. Nanotechnol. 4, 103 (2009). https://doi.org/10.1038/nnano.2008.400
  7. C. H. Park, S. B. Zhang and S.-H Wei, Phys. Rev. B 66, 073202 (2002).
  8. S. H. Wei, Comput. Mater. Sci. 30, 337 (2004). https://doi.org/10.1016/j.commatsci.2004.02.024
  9. H.-S Kim, E.-K. Jeon, J.-J Kim, H.-M. So, H. Chang, J.-O. Lee and N. Park, Appl. Phys. Lett. 93, 123106 (2008). https://doi.org/10.1063/1.2990642
  10. B.-K. Kim, J.-J. Kim, H.-M. So, K.-j. Kong, H. Chang, J.-O Lee and N. Park, Appl. Phys. Lett. 89, 243115 (2006). https://doi.org/10.1063/1.2403929
  11. S. Wang, Q. Zeng, L. Yang, Z. Zhang, Z. Wang, T. Pei, L. Ding, X. Liang, M. Gao, Y. Li and L.-M. Peng, Nano Lett. 11, 23 (2011). https://doi.org/10.1021/nl101513z
  12. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller and Ph. Avouris, Phys. Rev. Lett. 89, 106801 (2002).
  13. T. Minami, H. Sato, H. Nanto and S. Takata, Jpn. J. Appl. Phys., Part 2 24, L781 (1985). https://doi.org/10.1143/JJAP.24.L781
  14. G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee and S. T. Lee, Nano Lett. 8, 2591 (2008). https://doi.org/10.1021/nl073022t
  15. B. Xiang, P. Wang, X. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. Yu and D. Wang, Nano Lett. 7, 323 (2007). https://doi.org/10.1021/nl062410c
  16. J. Y. Park, Y. S. Yun, Y. S. Hong, H. Oh, J.-J. Kim and S. S. Kim, Appl. Phys. Lett. 87, 123108 (2005). https://doi.org/10.1063/1.2053365
  17. H. Kind H. Yan, B. Messer, M. Law and P. Yang, Adv. Mater. 14, 158 (2002). https://doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
  18. H. Oh, Y.-S. Lo, J.-J. Kim, J.-O Lee and S. S. Kim, J. Korean Phys. Soc. 51, 1829 (2007). https://doi.org/10.3938/jkps.51.1829
  19. T. Kim, M. Yoshitake, S. Yagyu, S. Nemsak, T. Nagata and T. Chikyow, Surf. Interface Anal. 42, 1528 (2010). https://doi.org/10.1002/sia.3601
  20. F. A. Kroger, Chemistry of Imperfect Crystals (Wiley, New York, 1974), Vol. 2, p. 752.
  21. B. G. Streetman, Solid State Electronic Devices (Prentice-Hall, London, 1995), p. 189.

Cited by

  1. Effect of Rapid Thermal Annealing on the Electrical and Structural Properties of Se Schottky Contacts to n-Type Si vol.54, pp.7, 2011, https://doi.org/10.2320/matertrans.m2013075
  2. Poole-Frenkel behavior in amorphous oxide thin-film transistors prepared on SiOC vol.64, pp.10, 2011, https://doi.org/10.3938/jkps.64.1519
  3. Influence of annealing effects on the electrical and microstructural properties of Se Schottky contacts on n-type GaN vol.25, pp.5, 2011, https://doi.org/10.1007/s10854-014-1891-5
  4. ZnO, SnO2, ZTO 산화물반도체의 전기적인 특성 분석 vol.25, pp.7, 2011, https://doi.org/10.3740/mrsk.2015.25.7.347
  5. 열처리 온도에 따라서 절연체, 반도체, 전도체의 특성을 갖는 GZO 박막의 특성연구 vol.26, pp.6, 2011, https://doi.org/10.3740/mrsk.2016.26.6.342
  6. ZnO의 열처리방법에 따른 전기적인 특성의 변화와 결정성 vol.27, pp.5, 2011, https://doi.org/10.3740/mrsk.2017.27.5.242
  7. Diffusion Currents in the Amorphous Structure of Zinc Tin Oxide and Crystallinity-Dependent Electrical Characteristics vol.18, pp.4, 2011, https://doi.org/10.4313/teem.2017.18.4.225