DOI QR코드

DOI QR Code

Thermal deformation of epoxy type resin for neon transformer housing

  • Lee, Seung-Bum (Department of Chemical Engineering, Dankook University) ;
  • Hong, In-Kwon (Department of Chemical Engineering, Dankook University)
  • Published : 2011.05.25

Abstract

This study focused on the experimental and theoretical evaluation of the thermal stability of epoxy resins for the development of neon transformer housings. A variety of hardeners was added to the epoxy resin to improve the thermal stability and workability of the neon transformer. Silicon dioxide ($SiO_2$) also was added as a reinforcement filler. Then, the variation of the viscosity and thermal stability with the amount of reinforcement filler and hardener was evaluated. A hardener modified with cycloaliphatic aminewas superior to the polyamide type hardener in terms of the physical properties and the optimum curing conditions were found to be a curing time of 70 min at 343 K. The viscosity of the epoxy resin increased with increasing amount of silicon dioxide ($SiO_2$), whereas the volume deformation ratio used for the evaluation of the thermal stability decreased. As a result, it was concluded that the polyamide type hardener had superior characteristics in terms of the workability and thermal stability and that the optimum silicon dioxide ($SiO_2$) content was 50 wt%.

Keywords

References

  1. A.J. Moses, IEEE Trans. Magn. 34 (1998) 1186. https://doi.org/10.1109/20.706473
  2. Y. Shikaze, M. Imori, H. Fuke, H. Matsumoto, T. Taniguchi, IEEE Trans. Magn. 48 (2000) 535.
  3. C.A. May, Epoxy Resins Chemistry and Technology, Marcel Dekker Inc., New York, 1988.
  4. W. Yasuo, T. Takeshj, H. Takashi, H. Takashi, IEEE Trans. Power Deliv. 5 (1990) 19.
  5. L.W. Pierce, IEEE Trans. Power Deliv. 7 (1993) 920.
  6. R.S. Bauer, Epoxy Resin Chemistry, Advanced in Chemistry Series, vol. 114, no. 1, American Chemical Society, Washington, DC, 1979.
  7. C.H. Lee, Handbook of Epoxy Formulation, Kyowoosa, Seoul, 2009.
  8. K.H. Park, Y.S. Lee, J.Y. Song, S. Lee, S.I. Kim, J. Korean Oil Chem. Soc. 24 (2007) 393.
  9. S.G Choi, N.T. Lee, J. Korean Ind. Chem. 14 (2003) 433.
  10. S.J. Park, K. Li, F.L. Jin, J. Ind. Eng. Chem. 11 (2005) 720.
  11. S.J. Park, F.L. Jin, J.S. Shin, Mater. Sci. Eng. A 390 (2005) 240. https://doi.org/10.1016/j.msea.2004.08.022
  12. H. Lee, K. Neville, Handbook of Epoxy Resins, Mc-Graw-Hill, New York, 1967.
  13. S.G. Hong, J.S. Tsai, Macromol. Mater. Eng. 276 (2000) 59. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<59::AID-MAME59>3.0.CO;2-O
  14. S.J. Park, F.L. Jin, Polym. Degrad. Stabil. 86 (2004) 515. https://doi.org/10.1016/j.polymdegradstab.2004.06.003
  15. J. Froflich, D. Golombowski, R. Thomann, R. Mulhaupt, Macromol. Mater. Eng. 289 (2004) 13. https://doi.org/10.1002/mame.200300204
  16. A.M. Matawie, E.M. Sadek, Polym. Adv. Technol. 10 (1999) 233.
  17. S.J. Park, F.L. Jin, J.R. Lee, Macromol. Rapid Commun. 25 (2004) 724. https://doi.org/10.1002/marc.200300191
  18. J.H. Klug, J.C. Seferis, Polym. Eng. Sci. 39 (1999) 1837 https://doi.org/10.1002/pen.11577
  19. S.J. Park, S.J. Seok, J.G. Kang, S.H. Kwon, Elastomer 39 (2004) 42.
  20. E.N. Gilbert, B.S. Hayes, J.C. Seferis, Polym. Eng. Sci. 43 (2003) 1096. https://doi.org/10.1002/pen.10093
  21. D.M. Ha, J. KOSOS 22 (2007) 22.
  22. S.J. Park, F.L. Jin, J.R. Lee, J.S. Shin, Polymer (Korea) 27 (2003) 183.
  23. Y.R. Ham, S.H. Kim, Y.J. Shin, D.H. Lee, M.H. Yang, J.H. Min, J.S. Shin, J. Ind. Eng. Chem. 16 (2010) 556. https://doi.org/10.1016/j.jiec.2010.03.022

Cited by

  1. 증량제 혼합비율에 따른 네온변압기의 열내구성 평가 vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1053