DOI QR코드

DOI QR Code

Performance of electrochemical double layer capacitors using highly porous activated carbons prepared from beer lees

  • Lee, Sang Guk (Center for Functional Nano Chemicals and School of Applied Chemical Engineering, Chonnam National University) ;
  • Park, Kwang Hyun (Center for Functional Nano Chemicals and School of Applied Chemical Engineering, Chonnam National University) ;
  • Shim, Wang Geun (Center for Functional Nano Chemicals and School of Applied Chemical Engineering, Chonnam National University) ;
  • balathanigaimani, M.S. (Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology) ;
  • Moon, Hee (Center for Functional Nano Chemicals and School of Applied Chemical Engineering, Chonnam National University)
  • Published : 2011.05.25

Abstract

Beer lees precursor is chosen to prepare activated carbons having different physical and chemical properties. The beer lees-based activated carbons (BL-ACs) are characterized by $N_2$ adsorption/desorption isotherms, adsorption energy distributions (AEDs), and X-ray photoelectric spectroscopy (XPS). Furthermore the electrochemical properties of the BL-ACs are assessed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and constant current charge/discharge method. The maximum specific capacitance (about 188 F/g at discharge current of l mA/$cm^2$) is obtained in 0.1 M $H_2SO_4$ electrolyte solution, which is a relatively low electrolyte concentration. The overall results suggest that the BL-ACs are good candidates for EDLC electrode materials.

Keywords

References

  1. A. Burke, Electrochim. Acta 53 (2007) 1083. https://doi.org/10.1016/j.electacta.2007.01.011
  2. M. Endo, Y.J. Kim, H. Ohta, K. Ishii, T. Inoue, T. Hayashi, Y. Nishimura, T. Maeda, M.S. Dresselhaus, Carbon 40 (2002) 2613. https://doi.org/10.1016/S0008-6223(02)00191-4
  3. H. Teng, Y. Chang, C. Hsieh, Carbon 39 (2001) 1981. https://doi.org/10.1016/S0008-6223(01)00027-6
  4. M. Arulepp, L. Permann, J. Leis, A. Perkson, K. Rumma, A. Janes, E. Lust, J. Power Sources 133 (2004) 320. https://doi.org/10.1016/j.jpowsour.2004.03.026
  5. D. Lozano-Castello, D. Cazorla-Amoros, A. Linares Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765. https://doi.org/10.1016/S0008-6223(03)00141-6
  6. M.J. Bleda-Martiez, D. Lazano-castello, E. Morallon, D. Cazorla-Amoros, A. Linares-Solano, Carbon 44 (2006) 2642. https://doi.org/10.1016/j.carbon.2006.04.017
  7. G. Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska, G. Lota, E. Frackowiak, Electrochim. Acta 50 (2005) 1197. https://doi.org/10.1016/j.electacta.2004.07.045
  8. M.S. Balathanigaimani, W.G. Shim, M.J. Lee, C. Kim, J.W. Lee, H. Moon, Electrochem. Commun. 10 (2008) 868. https://doi.org/10.1016/j.elecom.2008.04.003
  9. R. Kotz, M. Carlen, Electrochim. Acta 45 (2000) 2483. https://doi.org/10.1016/S0013-4686(00)00354-6
  10. F. Elzbieta, B. Francois, Carbon 39 (2001) 937. https://doi.org/10.1016/S0008-6223(00)00183-4
  11. H.K. Jeong, M.H. Jin, E.J. Ra, K.Y. Sheem, G.H. Han, S. Arepalli, Y.H. Lee, ACS Nano 4 (2010) 1162. https://doi.org/10.1021/nn901790f
  12. M.D. Stoller, S.J. Park, Y. Zhu, J.H. An, R.S. Ruoff, Nano Lett. 8 (2009) 3498.
  13. O. Ioannidou, A. Zabaniotou, Renew. Sust. Energy Rev. 11 (2007) 1966. https://doi.org/10.1016/j.rser.2006.03.013
  14. M.S. Balathanigaimani, W.G. Shim, C. Kim, J.W. Lee, H. Moon, Surf. Interface Anal. 41 (2009) 484. https://doi.org/10.1002/sia.3051
  15. J. Shibata, N. Murayama, M. Tateyama, Resour. Process. 56 (2009) 120. https://doi.org/10.4144/rpsj.56.120
  16. M. Heuchel, M. Jaroniec, R.K. Gilpin, P. Brauer, M.V. Szombathely, Langmuir 9 (1993) 2537. https://doi.org/10.1021/la00034a011
  17. J. Choma, M. Jaroniec, Langmuir 13 (1997) 1026. https://doi.org/10.1021/la950959d
  18. P. Brauer, M. Fassler, M. Jaroniec, Thin Solid Films 123 (1985) 245. https://doi.org/10.1016/0040-6090(85)90165-8
  19. W. Rudzinski, W. Plazinski, J. Colloid Interface Sci. 327 (2008) 36. https://doi.org/10.1016/j.jcis.2008.07.048
  20. W.G. Shim, J.W. Lee, H. Moon, Sep. Sci. Technol. 41 (2006) 3693. https://doi.org/10.1080/01496390600956936
  21. M.J. Bleda-Martiez, J.A. Macia-Agullo, D. Lazano-castello, E. Morallon, D. Cazorla- Amoros, A. Linares-Solano, Carbon 43 (2005) 2677. https://doi.org/10.1016/j.carbon.2005.05.027
  22. C.T. Hsieh, H. Teng, Carbon 40 (2002) 667. https://doi.org/10.1016/S0008-6223(01)00182-8
  23. K. Okajima, K. Ohta, M. Sudoh, Electrochim. Acta 50 (2005) 2227. https://doi.org/10.1016/j.electacta.2004.10.005

Cited by

  1. Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance vol.56, pp.27, 2011, https://doi.org/10.1016/j.electacta.2011.08.107
  2. Easy synthesis of polyaniline-based mesoporous carbons and their high electrochemical performance vol.163, pp.None, 2011, https://doi.org/10.1016/j.micromeso.2012.04.047
  3. Electrochemical performance of graphene/carbon electrode contained well-balanced micro- and mesopores by activation-free method vol.65, pp.None, 2012, https://doi.org/10.1016/j.electacta.2012.01.009
  4. Effect of ball milling on electrochemical characteristics of walnut shell-based carbon electrodes for EDLCs vol.155, pp.None, 2012, https://doi.org/10.1016/j.micromeso.2012.01.006
  5. Controllable Synthesis of Highly Conductive Polyaniline Coated Silica Nanoparticles Using Self-Stabilized Dispersion Polymerization vol.4, pp.9, 2011, https://doi.org/10.1021/am300979s
  6. Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, vol.3, pp.5, 2014, https://doi.org/10.1002/wene.102
  7. KOH activation of a HyperCoal to develop activated carbons for electric double-layer capacitors vol.105, pp.None, 2011, https://doi.org/10.1016/j.jaap.2013.10.010
  8. Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities vol.4, pp.4, 2011, https://doi.org/10.1002/aenm.201300816
  9. Energy storage applications of activated carbons: supercapacitors and hydrogen storage vol.7, pp.4, 2014, https://doi.org/10.1039/c3ee43525c
  10. CO2 adsorption characteristics of slit-pore shaped activated carbon prepared from cokes with high crystallinity vol.16, pp.1, 2011, https://doi.org/10.5714/cl.2015.16.1.045
  11. High‐Performance Asymmetric Supercapacitors Based on Multilayer MnO2/Graphene Oxide Nanoflakes and Hierarchical Porous Carbon with Enhanced Cycling Stability vol.11, pp.11, 2011, https://doi.org/10.1002/smll.201401922
  12. 열처리 온도에 의한 피치계 활성탄소섬유의 기공구조 변화가 전기화학적 특성에 미치는 영향 vol.26, pp.5, 2011, https://doi.org/10.14478/ace.2015.1085
  13. Micro-mesoporous carbons from rice husk as active materials for supercapacitors vol.4, pp.4, 2011, https://doi.org/10.1007/s40243-015-0061-x
  14. Active carbon/graphene hydrogel nanocomposites as a symmetric device for supercapacitors vol.24, pp.7, 2016, https://doi.org/10.1080/1536383x.2016.1174115
  15. 3D Porous Hierarchical Microspheres of Activated Carbon from Nature through Nanotechnology for Electrochemical Double-Layer Capacitors vol.4, pp.12, 2011, https://doi.org/10.1021/acssuschemeng.6b01227
  16. Influence of aqueous KOH and H 2 SO 4 electrolytes ionic parameters on the performance of carbon-based supercapacitor electrodes vol.10, pp.3, 2017, https://doi.org/10.1142/s1793604717500138
  17. Interconnected meso/microporous carbon derived from pumpkin seeds as an efficient electrode material for supercapacitors vol.24, pp.None, 2017, https://doi.org/10.5714/cl.2017.24.73
  18. Conversion of Oil Palm Kernel Shell Biomass to Activated Carbon for Supercapacitor Electrode Application vol.10, pp.6, 2011, https://doi.org/10.1007/s12649-018-0196-y
  19. Confrontation of various adsorption models for assessing the porous structure of activated carbons vol.25, pp.8, 2011, https://doi.org/10.1007/s10450-019-00129-y
  20. Elaeocarpus tectorius derived phosphorus-doped carbon as an electrode material for an asymmetric supercapacitor vol.44, pp.1, 2011, https://doi.org/10.1039/c9nj04813h
  21. Simple and Sustainable Preparation of Nonactivated Porous Carbon from Brewing Waste for High‐Performance Lithium-Sulfur Batteries vol.13, pp.13, 2011, https://doi.org/10.1002/cssc.202000969
  22. ‘In-Situ’ Preparation of Carbonaceous Conductive Composite Materials Based on PEDOT and Biowaste for Flexible Pseudocapacitor Application vol.4, pp.3, 2011, https://doi.org/10.3390/jcs4030087