DOI QR코드

DOI QR Code

Removal of copper ion using rice hulls

  • Jeon, Choong (Department of Environmental & Applied Chemical Engineering, Gangneung-Wonju National University)
  • Published : 2011.05.25

Abstract

Rice hulls which have some functional groups like hydroxyl, carboxyl and amino groups were used as an adsorbent to remove copper ions. The functional groups and composition of elements in rice hulls were confirmed by the FT-IR and elemental analysis. Rice hulls had a high uptake capacity of 0.18 mmol/g-dry mass for copper ion at pH 4 and regression curve using Langmuir isotherm equation fit well with the experimental data. The effects of pH, loading amount, time, and organic material (NTA) on uptake capacity of copper ions were investigated. The optimal pH for copper ion uptake was the 4 and rice hulls could remove copper ions of about 33% with 5.0 g of loading amount. Adsorption process of copper ions was almost completed in 30 min and effect of NTA on copper uptake capacity was very small in low concentration (<100 mg/L).

Keywords

References

  1. K. Kadiverlu, K. Thamaraiselvi, C. Namasivayam, Bioresour. Technol. 76 (2001) 63. https://doi.org/10.1016/S0960-8524(00)00072-9
  2. Y. Madrid, M.E. Barrio-Cordoba, C. Camara, Analyst 123 (1998) 1593. https://doi.org/10.1039/a800632f
  3. M.C. Dos Santos, E. Lenzi, Environ. Technol. 21 (2000) 615.
  4. S.F. Montanher, E.A. Oliveira, M.C. Rollemberg, J. Hazard. Mater. B 117 (2005) 207. https://doi.org/10.1016/j.jhazmat.2004.09.015
  5. G.S. Agarwal, H.K. Bhuptawat, S. Chaudhari, Bioresour. Technol. 97 (2006) 949. https://doi.org/10.1016/j.biortech.2005.04.030
  6. A. Saeed, M. Iqbal, M.W. Akhtar, J. Hazard. Mater. B 117 (2005) 65. https://doi.org/10.1016/j.jhazmat.2004.09.008
  7. V.P. Della, I. Kuhn, D. Hotza, Quim. Nova 24 (2001) 778.
  8. C.R.T. Tarley, M.A.Z. Arruda, Chemosphere 54 (2004) 987. https://doi.org/10.1016/j.chemosphere.2003.09.001
  9. S.R. Kamath, A. Proctor, Cereal Chem. 75 (1998) 484. https://doi.org/10.1094/CCHEM.1998.75.4.484
  10. C.E. Lopez Pasquali, H. Herrera, Thermochim. Acta 293 (1997) 39. https://doi.org/10.1016/S0040-6031(97)00059-2
  11. B.O. Juliano, Rice Chemistry and Technology, American Association of Cereal Chemistry, New York, 1985.
  12. B. Volesky, Biosorption of Heavy Metals, CRC Press, 1990.
  13. W.E. Marshall, E.T. Champagne, W.J. Evans, J. Environ. Sci. Health. A28 (1993) 1977.
  14. E. Munaf, R. Zein, Environ. Technol. 18 (1997) 359. https://doi.org/10.1080/09593331808616549
  15. K.K. Wong, C.K. Lee, K.S. Low, M.J. Haron, Chemosphere 50 (2003) 23. https://doi.org/10.1016/S0045-6535(02)00598-2
  16. J.P. Chen, L. Hong, S. Wu, L. Wang, Langmuir 18 (2002) 9413. https://doi.org/10.1021/la026060v
  17. B.D. Honeyman, A.H. Santcchi, Environ. Sci. Technol. 22 (1988) 862. https://doi.org/10.1021/es00173a002

Cited by

  1. Valuation of Unmodified Rice Husk Waste as an Eco-Friendly Sorbent to Remove Mercury: a Study Using Environmental Realistic Concentrations vol.224, pp.7, 2013, https://doi.org/10.1007/s11270-013-1599-9
  2. 아카시아 수피를 이용한 카드뮴 이온의 제거 vol.27, pp.3, 2011, https://doi.org/10.14478/ace.2016.1045
  3. Adsorption of Cu and Ni Ions from Aqueous Solutions by Commercial Activated Carbon and the Reutilization in Glass Coloration vol.34, pp.1, 2011, https://doi.org/10.1007/s11595-019-2012-3
  4. Removal of sodium diclofenac from aqueous solutions by rice hull biochar vol.3, pp.2, 2021, https://doi.org/10.1007/s42773-020-00079-7