DOI QR코드

DOI QR Code

Simulation and performance evaluation of the anoxic/anaerobic/aerobic process for biological nutrient removal

Zhou, Zhen;Wu, Zhichao;Wang, Zhiwei;Tang, Shujuan;Gu, Guowei;Wang, Luochun;Wang, Yingjun;Xin, Zhiling

  • Published : 20110500

Abstract

As a modified configuration of the conventional anaerobic/anoxic/aerobic (AAO) process, a novel anoxic/anaerobic/aerobic (Reversed AAO, RAAO) process has been extensively applied in domestic wastewater treatment plants (WWTP). In this study, the Activated Sludge Model No. 2d (ASM2d) and a secondary clarifier model were calibrated and applied to simulate a pilot-scale RAAO test and evaluate the operational performance of the RAAO process. For calibration of the biological model ASM2d, only four kinetic parameters were adjusted to accurately simulate in-process variations of ammonium, nitrate and phosphate. Simulation results by the calibrated model demonstrated that phosphorus accumulating organisms (PAO) in the RAAO process (0.243 $gP{\cdot}(gCOD)^{-1}$) contains less poly-phosphate than the AAO process (0.266 $gP{\cdot}(gCOD)^{-1}$). With the increasing mixed liquor recirculation ratio in the RAAO process, the fraction of heterotrophic biomass and autotrophic biomass both increased, whereas the PAO decreased owing to adverse effects of electron acceptors on phosphorus release and poly-hydroxy-alkanoates synthesis.

Keywords

References

  1. G. Tchobanoglous, F. L. Burton and H. D. Stensel, Wastewater engineering: Treatment and reuse, Metcalf & Eddy Inc., New York (2003).
  2. M. Henze, W. Gujer and T. Mino, Activated sludge models ASM1, ASM2, ASM2D and ASM3, IWA Scientific and Technical Report, No. 9, London (2000).
  3. K.V. Gernaey, M. C. M. van Loosdrecht, M. Henze, M. Lind and S. B. Jorgensen, Environ. Model. Softw., 19, 763 (2004). https://doi.org/10.1016/j.envsoft.2003.03.005
  4. A. Nuhoglu, B. Keskinler and E. Yildiz, Process Biochem., 40, 2467 (2005). https://doi.org/10.1016/j.procbio.2004.09.011
  5. B. J. Ni and H. Q. Yu, Appl.Microbiol. Biotechnol., 77, 723 (2007). https://doi.org/10.1007/s00253-007-1185-4
  6. H. Siegrist, L. Rieger, G. Koch, M. Kühni and W. Gujer, Water Sci. Technol., 45, 61 (2002).
  7. T. Y. Pai, Process Biochem., 42, 978 (2007). https://doi.org/10.1016/j.procbio.2007.03.006
  8. J. Makinia, M. Swinarski and E. Dobiegala, Water Sci. Technol., 45, 209 (2002).
  9. J. Makinia, K.H. Rosenwinkel and V. Spering, Water Res., 39, 1489 (2005). https://doi.org/10.1016/j.watres.2005.01.023
  10. H. M. van Veldhuizen, M. C. M. van Loosdrecht and J. J. Heijnen, Water Res., 33, 3459 (1999). https://doi.org/10.1016/S0043-1354(99)00064-0
  11. M.H. Cho, J. Lee, J. H. Kim and H. C. Lim, Korean J. Chem. Eng., 27, 925 (2010). https://doi.org/10.1007/s11814-010-0122-x
  12. S. H. Lee, J. H. Ko, J.B. Park, J. H. Im, J. R. Kim, J. J. Lee and C.W. Kim, Korean J. Chem. Eng., 23, 203 (2006). https://doi.org/10.1007/BF02705717
  13. B. Zhang and T.Y. Gao, Chin. Water and Wastewater, 16, 11 (2000).
  14. G. Fu, B. Dong, Z.Y. Zhou and T.Y. Gao, Chin. Water and Wastewater, 20, 53 (2004).
  15. T. Kuba, A. Wachtmeister, M. C. M. van Loosdrecht and J. J. Heijnen, Water Sci. Technol., 30, 263 (1994).
  16. T. Kuba, M. C. M. van Loosdrecht, F. A. Brandse and J. J. Heijnen, Water Res., 31, 777 (1997). https://doi.org/10.1016/S0043-1354(96)00370-3
  17. M. Beccari, D. Dionisi, A. Giuliani, M. Majone and R. Ramadori, Water Sci. Technol., 45, 157 (2002).
  18. Z. Zhou, Z. Wu, Z. Wang, S. Tang and G. Gu, J. Chem. Technol. Biotechnol., 83, 1596 (2008). https://doi.org/10.1002/jctb.1984
  19. Chinese NEPA, Water and wastewater monitoring methods, Chinese Environmental Science Publishing House, Beijing (1997).
  20. P. J. Roeleveld and M. C. M. van Loosdrecht, Water Sci. Technol., 45, 77 (2002).
  21. P. Ginestet, A. Maisonnier and M. Spérandio, Water Sci. Technol., 45, 89 (2002).
  22. J. J.W. Hulsbeek, J. Kruit, P. J. Roeleveld and M. C. M. van Loosdrecht, Water Sci. Technol., 45, 127 (2002).
  23. G. Sin, S.W. H. van Hulle, D. J.W. De Pauw, A. van Griensven and P. A. Vanrolleghem, Water Res., 39, 2459 (2005). https://doi.org/10.1016/j.watres.2005.05.006
  24. S. K. Park, M.W. Lee, D. S. Lee and J. M. Park, Stud. Surf. Sci. Catal., 159, 401 (2006).
  25. C. D. M. Filipe, G. T. Daigger and C. P. L. Grady Jr, Water Environ. Res., 73, 213 (2001). https://doi.org/10.2175/106143001X139191
  26. T. Zhang, Y. Liu and H.H. Fang, Biotechnol. Bioeng., 92, 173 (2005). https://doi.org/10.1002/bit.20589
  27. I. Takacs, G.G. Patry and D. Nolasco, Water Res., 25, 1263 (1991). https://doi.org/10.1016/0043-1354(91)90066-Y
  28. J. B. Copp, The COST simulation benchmark: Description and simulator manual, Office for Official Publication of the European Community, Luxembourg (2002).
  29. Z. Zhou, Z. Wu, G. Gu and Z. Wang, Asia Pac. J. Chem. Eng., Article in press.
  30. T. Kuba, M. C. M. van Loosdrecht and J. J. Heijnen, Water Res., 30, 1702 (1996). https://doi.org/10.1016/0043-1354(96)00050-4
  31. G. Insel, G. Sin, D. S. Lee, I. Nopens and P. A. Vanrolleghem, J. Chem. Technol. Biotechnol., 81, 679 (2006). https://doi.org/10.1002/jctb.1464
  32. D. Brdjanovic, M. C. M. van Loosdrecht, P. Versteeg, C. M. Hooijmans, G. J. Alaerts and J. J. Heijnen. Water Res., 34, 846 (2000). https://doi.org/10.1016/S0043-1354(99)00219-5
  33. T. Panswad, A. Doungchai and J. Anotai, Water Res., 37, 409 (2003). https://doi.org/10.1016/S0043-1354(02)00286-5
  34. L. Rieger, G. Koch, M. Kühni, W. Gujer and H. Siegrist, Water Res., 35, 3887 (2001). https://doi.org/10.1016/S0043-1354(01)00110-5

Cited by

  1. Biological Phosphorus Removal Characteristics in a Full-Scale Unitank Wastewater Treatment Plant vol.610, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/amr.610-613.1696
  2. Biological Removal of Phosphate at Low Concentrations Using Recombinant Escherichia coli Expressing Phosphate-Binding Protein in Periplasmic Space vol.171, pp.5, 2011, https://doi.org/10.1007/s12010-013-0187-1
  3. Contaminant removal performances on domestic sewage using modified anoxic/anaerobic/oxic process and micro-electrolysis. vol.34, pp.17, 2013, https://doi.org/10.1080/09593330.2013.788074
  4. Optimization of a full-scale Unitank wastewater treatment plant for biological phosphorus removal vol.35, pp.6, 2014, https://doi.org/10.1080/09593330.2013.850519
  5. Enhanced removal of contaminant using the biological film, anoxic-anaerobic-aerobic and electro-coagulation process applied to high-load sewage treatment vol.35, pp.7, 2014, https://doi.org/10.1080/09593330.2013.852628
  6. Calibration and validation of an activated sludge model for a pilot-scale anoxic/anaerobic/aerobic/post-anoxic process vol.15, pp.9, 2011, https://doi.org/10.1631/jzus.a14b0066
  7. 고도 하수처리장의 전과정평가에 따른 환경성 및 경제성 평가 vol.52, pp.4, 2011, https://doi.org/10.9713/kcer.2014.52.4.503
  8. 호흡률 및 송풍기 제어 기반 포기조 최적 DO 농도 설정과 전력 비용 절감 연구 vol.52, pp.5, 2011, https://doi.org/10.9713/kcer.2014.52.5.581
  9. A comprehensive method for the evaluation of biological nutrient removal potential of wastewater treatment plants vol.53, pp.11, 2011, https://doi.org/10.1080/19443994.2013.870064
  10. A modeling understanding on the phosphorous removal performances of A2O and reversed A2O processes in a full-scale wastewater treatment plant vol.25, pp.23, 2018, https://doi.org/10.1007/s11356-018-2317-3
  11. Microplastics removal through water treatment plants: Its feasibility, efficiency, future prospects and enhancement by proper waste management vol.5, pp.None, 2011, https://doi.org/10.1016/j.envc.2021.100264