DOI QR코드

DOI QR Code

Atom Probe Tomography and Nano Secondary Ion Mass Spectroscopy Investigation of the Segregation of Boron at Austenite Grain Boundaries in 0.5 wt.% Carbon Steels

  • Seol, J.B. (Department of Materials Scence & Engineering, Pohang University Scence & Engineering (POSTECH)) ;
  • Lim, N.S. (Department of Materials Scence & Engineering, Pohang University Scence & Engineering (POSTECH)) ;
  • Lee, B.H. (National Center for Nanomaterials Technology (NCNT)) ;
  • Renaud, L. (CAMECA 29 Quai des Gresillons) ;
  • Park, C.G. (Department of Materials Scence & Engineering, Pohang University Scence & Engineering (POSTECH))
  • Published : 2011.06.20

Abstract

The grain boundary segregation of boron atoms in high strength low alloy steels containing 50 ppm boron was accomplished using atom probe tomography (APT) and nano-beam secondary ion mass spectroscopy (SIMS). The formation of boro-carbides under an excessive addition of boron to the steels was identified through the SIMS and TEM. The APT was performed in order to evaluate the composition of the alloying elements, such as, boron and carbon, segregated at prior austenite grain boundaries. The boron contents at the prior austenite grain boundaries were approximately $1.7{\pm}0.2$ at.%, which was approximately 70 times more than the amount of boron added to the steels.

Keywords

References

  1. M. P. Seah, Acta metall. 28, 955 (1980). https://doi.org/10.1016/0001-6160(80)90112-1
  2. M. Ueno and K. Itoh, Tetsu-to Hagane 74, 1073 (1988). https://doi.org/10.2355/tetsutohagane1955.74.6_1073
  3. D. H. Werner, Boron and Boron Containing Steels, Velag Stahleisen mbH, Dusseldorf (1995).
  4. X. L. He, Y. Y. Chu, and J. J. Jonas, Acta metall. 37, 2905 (1989). https://doi.org/10.1016/0001-6160(89)90325-8
  5. A. Cerezo, T. J. Godfrey, and G. D. W. Smith, Rev. Sci. Instrum. 59, 862 (2004).
  6. B. Gault, Rev. Sci. Instrum. 77, 043705 (2006). https://doi.org/10.1063/1.2194089
  7. F. Hillion, B. Daigne, F. Girard, and G. Slodzian, Proc. of SIMS X, p. 979, Munster (1995).
  8. Y. S. Yang, J. G. Bae, and C. G. Park, J. Kor. Inst. Met. & Mater. 46, 111 (2008).
  9. K. Seto, D. J. Larson, P. J. Warrren, and G. D. W. Smith, Scripta mater. 40, 1029 (1999). https://doi.org/10.1016/S1359-6462(98)00485-0
  10. M. K. Miller, Rev. Sci. Instrum. 78, 031101 (2007). https://doi.org/10.1063/1.2709758
  11. D. J. Larson, Ultramicroscopy 79, 287 (1999). https://doi.org/10.1016/S0304-3991(99)00055-8
  12. W. J. Jadenska Jr. and J. E. Morral, Metall. Trans. A 3, 2933 (1972). https://doi.org/10.1007/BF02652863
  13. K. C. Cho, Y. M. Koo, and J. K. Park, J. Kor. Inst. Met. & Mater. 46, 329 (2008).
  14. J. B. Seol, G. H. Gu, N. S. Lim, S. Das, and C. G. Park, Ultramicroscopy 110, 783 (2010). https://doi.org/10.1016/j.ultramic.2009.12.006

Cited by

  1. Effects of aluminum on the microstructure and phase transformation of TRIP steels vol.18, pp.4, 2011, https://doi.org/10.1007/s12540-012-4012-0
  2. SIMS imaging of the nanoworld: applications in science and technology vol.27, pp.7, 2011, https://doi.org/10.1039/c2ja30015j
  3. Atomic spectrometry update. Industrial analysis: metals, chemicals and advanced materials vol.27, pp.12, 2011, https://doi.org/10.1039/c2ja90058k
  4. Effects of Dynamic Strain Hardening Exponent on Abnormal Cleavage Fracture Occurring During Drop Weight Tear Test of API X70 and X80 Linepipe Steels vol.45, pp.2, 2011, https://doi.org/10.1007/s11661-013-2046-7
  5. Effects of boron addition on tensile and Charpy impact properties in high-phosphorous steels vol.589, pp.None, 2011, https://doi.org/10.1016/j.msea.2013.09.095
  6. Complementing Secondary Ion Mass Spectrometry with other Ion-, Electron-and Photon-based Analytical Microscopies vol.22, pp.suppl3, 2011, https://doi.org/10.1017/s1431927616002567
  7. A Brief Comment on Atom Probe Tomography Applications vol.46, pp.3, 2011, https://doi.org/10.9729/am.2016.46.3.127
  8. Three-dimensional nanoscale characterisation of materials by atom probe tomography vol.63, pp.2, 2011, https://doi.org/10.1080/09506608.2016.1270728
  9. Effect of Boron Distribution on the Intergranular Corrosion Resistance of UNS S32506 Duplex Stainless Steels vol.166, pp.13, 2011, https://doi.org/10.1149/2.1101912jes
  10. Coupling Secondary Ion Mass Spectrometry and Atom Probe Tomography for Atomic Diffusion and Segregation Measurements vol.25, pp.2, 2011, https://doi.org/10.1017/s1431927618015623
  11. NanoSIMS Imaging and Analysis in Materials Science vol.13, pp.1, 2011, https://doi.org/10.1146/annurev-anchem-092019-032524
  12. Effects of boron on the microstructure and impact toughness of weathering steel weld metals and existing form of boron vol.833, pp.None, 2022, https://doi.org/10.1016/j.msea.2021.142560