DOI QR코드

DOI QR Code

Monte-Carlo Simulations for Proton-beam-induced Prompt Radiations in Biological Tissue

  • Lee, K.S. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Hong, B. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Park, S. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Rhee, H.B. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Sim, K.S. (Department of Physics and Korea Detector Laboratory, Korea University)
  • Published : 2011.01.15

Abstract

In this paper, we report on a feasibility study for proton-induced prompt radiations and for the potential application to proton therapy. A GEANT4 simulation program was used to perform a Monte-Carlo study to obtain energy spectra and vertex profiles for prompt photons and neutrons induced in human tissue during irradiation with therepeutic proton beams. The simulation results show that prompt photons with energies larger than 3 MeV tend to show a close spatial correlation with the Bragg curve of dose delivery. On the other hand, the contribution of photon emissions induced by various charged particles and neutrons is relatively large in the low-energy region of the prompt-photon spectra. The photons in the energy range lower than 3 MeV are broadly distributed over the tissue volume and show a relatively poor spatial correlation with the dose profile of the proton beam. The Monte-Carlo analysis for the prompt neutrons shows that the spatial correlation with the dose profile decreases as the proton-beam energy increases.

Keywords

References

  1. K. Parodi, T. Bortfeld, W. Enghardt, F. Fiedler, A. Knopf, H. Paganetti, J. Pawelke, G. Shakirin and H. Shih, Nucl. Instrum. Methods Phys. Res., Sect. A 591, 282 (2008). https://doi.org/10.1016/j.nima.2008.03.075
  2. A. Knopf, K. Parodi, H. Paganetti, E. Cascio, A. Bonab and T. Bortfeld, Phys. Med. Biol. 53, 4137 (2008). https://doi.org/10.1088/0031-9155/53/15/009
  3. F. Attanasi, N. Belcari, M. Carmarda, G. A. P. Cirrone, G. Cuttone, A. Del Guerra, F. D. Rosa, N. Lanconelli, V. Rosso and S. Vecchio, Nucl. Instrum. Methods Phys. Res., Sect. A 591, 296 (2008). https://doi.org/10.1016/j.nima.2008.03.076
  4. K. Parodi and T. Bortfeld, Phys. Med. Biol. 52, 3369 (2007) https://doi.org/10.1088/0031-9155/52/12/004
  5. K. Parodi, A. Ferrari and H. Paganetti, Phys. Med. Biol. 51, 1991 (2006). https://doi.org/10.1088/0031-9155/51/8/003
  6. J. C. Polf, S. Peterson, G. Ciangaru, M. Gillin and S. Bedder, Phys. Med. Biol. 54, 731 (2009) https://doi.org/10.1088/0031-9155/54/3/017
  7. J. C. Polf, S. Peterson, M. McCleskey, B. T. Roeder, A. Spiridon, S. Beddar and L. Trache, Phys. Med. Biol. 54, N519 (2009). https://doi.org/10.1088/0031-9155/54/22/N02
  8. C. H. Min, J. W. Kim, M. Y. Youn and C. H. Kim, Nucl. Instrum. Methods Phys. Res., Sect. A 580, 562 (2007).
  9. W. Tuckwell and E. Bezak, Phys. Med. Biol. 52, 2483 (2007). https://doi.org/10.1088/0031-9155/52/9/010
  10. I. Pshenichnov, I. Mishustin and W. Greiner, Phys. Med. Biol. 52, 7295 (2007) https://doi.org/10.1088/0031-9155/52/24/007
  11. I. Pshenichnov, I. Mishustin and W. Greiner, Phys. Med. Biol. 51, 6099 (2006). https://doi.org/10.1088/0031-9155/51/23/011
  12. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006);
  13. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8
  14. The standard composition ratios of the constituent elements of soft tissue are found at http://pdg.lbl.gov/2009/AtomicNuclearProperties/.
  15. C. Kim, B. Hong, M. Jo, K. S. Lee and K. S. Sim, Nucl. Instrum. Methods Phys. Res., Sect. A 609, 276 (2009); https://doi.org/10.1016/j.nima.2009.08.058
  16. C. Kim, B. Hong, R. J. Hu, M. Jo, K. S. Lee, S. Park and K. S. Sim, J. Korean Phys. Soc. 54, 2133 (2009). https://doi.org/10.3938/jkps.54.2133
  17. R. J. Hu, C. Kim, B. Hong, M. Jo, K. S. Lee, S. Park and K. S. Sim, J. Korean Phys. Soc. 54, 586 (2009); https://doi.org/10.3938/jkps.54.586
  18. C. Kim, R. J. Hu, B. Hong, H. C. Kim, K. S. Lee, S. Park and K. S. Sim, J. Korean Phys. Soc. 52, 908 (2008). https://doi.org/10.3938/jkps.52.908

Cited by

  1. Prompt gamma imaging with a slit camera for real-time range control in proton therapy vol.57, pp.11, 2011, https://doi.org/10.1088/0031-9155/57/11/3371
  2. Test of a Multilayer Dose-Verification Gaseous Detector with Raster-Scan-Mode Proton Beams vol.4, pp.5, 2011, https://doi.org/10.5573/ieiespc.2015.4.5.297
  3. Scintillator-Based High-Throughput Fast Timing Spectroscopy for Real-Time Range Verification in Particle Therapy vol.63, pp.2, 2011, https://doi.org/10.1109/tns.2016.2527822
  4. Spectroscopic study of prompt-gamma emission for range verification in proton therapy vol.34, pp.None, 2017, https://doi.org/10.1016/j.ejmp.2017.01.003