DOI QR코드

DOI QR Code

Review Paper: Recent Developments in Light Extraction Technologies of Organic Light Emitting Diodes

  • Hong, Ki-Hyon (Division of Advanced Materials Science and Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Lee, Jong-Lam (Division of Advanced Materials Science and Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • Published : 2011.06.01

Abstract

Organic light emitting diodes (OLEDs) have rapidly progressed in recent years due to their potential applications in flat panel displays and solid-state lighting. In spite of the commercialization of OLEDs, they still have a low out-coupling efficiency of about 20% due to factors such as the total internal reflection, absorption, and surface plasmon coupling. This light out-coupling efficiency is a major limitation on the high efficiency levels of OLEDs. Hence, enhancing the light out-coupling efficiency of OLEDs offers the greatest potential for achieving a substantial increase in the external quantum efficiency and power efficiency of OLEDs. Accordingly, significant advancements in OLEDs have driven the development of light extraction technologies as well as highly transparent conducting electrode materials. Recent efforts to combine light extraction structures with the improved out-coupling efficiency of OLEDs have produced OLEDs with an efficiency level that matches the efficiency of a fluorescent tube ( >100 lm/W). This paper reviews the technical issues and recent progress in light extraction technologies and discusses ways of enhancing the out-coupling efficiency of OLEDs.

Keywords

References

  1. T. Sekitani, H. Nakajima, H. Maeda, T. Fukishima, T. Aida, K. Hata, and T. Someya, Nature Mater. 8, 494 (2009). https://doi.org/10.1038/nmat2459
  2. E. C.-W. Ou, L. Hu, G. C. R. Raymond, O. K. Soo, J. Pan, Z. Zheng, Y. Park, D. Hecht, G. Irvin, P. Drzaic, and G. Gruner, ACS Nano 3, 2258 (2009). https://doi.org/10.1021/nn900406n
  3. Y.-S. Park, J.-W. Kang, D. M. Kang, J.-W. Park, Y.-H. Kim, S.-K. Kwin, and J.-J. Kim, Adv. Mater. 20, 1957 (2008). https://doi.org/10.1002/adma.200702435
  4. L. S. Liao, W. K. Slusarek, T. K. Hatwar, M. L. Ricks, and D. L. Comfort, Adv. Mater. 20, 324 (2008). https://doi.org/10.1002/adma.200700454
  5. S. Schols, S. Verlaak, C. Rolin, D. Cheyns, J. Genoe, and P. Heremans, Adv. Func. Mater. 18, 136 (2008). https://doi.org/10.1002/adfm.200700769
  6. H. W. Choi, S. Y. Kim, K. B. Kim, Y.-H. Tak, and J.-L. Lee, Appl. Phys. Lett. 86, 012104 (2005). https://doi.org/10.1063/1.1846149
  7. C.-G. Zhen, Y.-F. Dai, W.-J. Zeng, Z. Ma, Z.-K. Chen, and J. Kieffer, Adv. Mater. 21, 699 (2011).
  8. S. Hamwi, J. Meyer, M. Kroger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, Adv. Func. Mater. 20, 1762 (2010). https://doi.org/10.1002/adfm.201000301
  9. T. V. Pho, P. Zalar, A. Garcia, T.-Q. Nguyen, and F. Wudl, Chem. Comm. 46, 8210 (2010). https://doi.org/10.1039/c0cc01596b
  10. C. Cai, S.-J. Su, T. Chiba, H. Sasabe, Y.-J. Pu, K. Nakayama, and J. Kido, Org. Electron. 12, 843 (2011). https://doi.org/10.1016/j.orgel.2011.01.021
  11. E. L. Williams, K. Haavisto, J. Li, and G. E. Jabbour, Adv. Mater. 19, 197 (2007). https://doi.org/10.1002/adma.200602174
  12. C.-L. Ho, M.-F. Lin, W.-Y. Wong, W.-K. Wong, and C.-H. Chen, Appl. Phys. Lett. 92, 083301 (2008). https://doi.org/10.1063/1.2883935
  13. J. Meyer, S. Hamwi, T. Bulow, H.-H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 113506 (2007). https://doi.org/10.1063/1.2784176
  14. S. Y. Kim, K. Y. Kim, Y.-H. Tak, and J.-L. Lee, Appl. Phys. Lett. 89, 132108 (2006). https://doi.org/10.1063/1.2357568
  15. K. Hong, K. Kim, and J.-L. Lee, Appl. Phys. Lett. 95, 213307 (2009). https://doi.org/10.1063/1.3266855
  16. S. Y. Kim, W.-K. Kim, K. Y. Kim, Y.-H. Tak, and J.-L. Lee, Electrochem. Solid St. 9, H1 (2006) https://doi.org/10.1149/1.2135426
  17. H. W. Choi, S. Y. Kim, W.-K. Kim, and J.-L. Lee, Appl. Phys. Lett. 87, 082102 (2005). https://doi.org/10.1063/1.2033129
  18. N. Chopra, J. Lee, Y. Zheng, S.-H. Eom, J. Xue, and F. So, Appl. Phys. Lett. 93, 143307 (2009).
  19. S. Y. Kim, K. Hong, H. W. Choi, K. Y. Kim, Y.-H. Tak, and J.-L. Lee, J. Electrochem. Soc. 156, J57 (2009). https://doi.org/10.1149/1.3072699
  20. R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke, K. Walzer, and K. Leo, J. Appl. Phys. 104, 014510 (2008). https://doi.org/10.1063/1.2951960
  21. S. Y. Kim and J.-L. Lee, Appl. Phys. Lett. 88, 112106 (2006). https://doi.org/10.1063/1.2179108
  22. B. C. Krummacher, S. Nowy, J. Frischeisen, M. Klein, and W. Brutting, Org. Electron. 10, 478 (2009). https://doi.org/10.1016/j.orgel.2009.02.002
  23. G. Schwartz, M. Pfeiffer, S. Reineke, K. Walzer, and K. Leo, Adv. Mater. 19, 3672 (2007). https://doi.org/10.1002/adma.200700641
  24. G. Schwartz, S. Reineke, T. C. Rosenow, K. Walzer, and L. Leo, Adv. Func. Mate. 19, 1319 (2009). https://doi.org/10.1002/adfm.200801503
  25. Y. R. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, and S. R. Forrest, Nature, 440, 908 (2006). https://doi.org/10.1038/nature04645
  26. S.-H. Eom, Y. Zheng, E. Wizesniewski, J. Lee, N. Chopra, F. So, and J. Xue, Appl. Phys. Lett. 94, 153303 (2009). https://doi.org/10.1063/1.3120276
  27. S.-C. Lo and P. L. Burn, Chem. Rev. 107, 1097 (2007). https://doi.org/10.1021/cr050136l
  28. J. A. G. Williams, StephanieDevelary, D. L. Rochester, and L. Murphy, Coordin. Chem. Rev. 252, 2596 (2008). https://doi.org/10.1016/j.ccr.2008.03.014
  29. S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brutting, J. Appl. Phys. 104, 123109 (2008). https://doi.org/10.1063/1.3043800
  30. V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, Phys. Rev. B 58, 3730 (1998). https://doi.org/10.1103/PhysRevB.58.3730
  31. J. Huang, G. Li, E. Wu, Q. Xu, and Y. Yang, Adv. Mater. 18, 114 (2006). https://doi.org/10.1002/adma.200501105
  32. C. Ganzorig and M. Fujihira, Appl. Phys. Lett. 81, 3137 (2002). https://doi.org/10.1063/1.1515129
  33. A. Misra, P. Kumar, M. N. Kamalasanan, and S. Chandra, Semicond. Sci. Technol. 21, R35 (2006). https://doi.org/10.1088/0268-1242/21/7/R01
  34. X. Qi, N. Li, and S. R. Forrest, J. Appl. Phys. 107, 014514 (2010). https://doi.org/10.1063/1.3275050
  35. H. Heil, J. Steiger, S. Kang, M. Gastel, H. Ortner, H. V. Seggem, and M. Stobel, J. Appl. Phys. 89, 420 (2001). https://doi.org/10.1063/1.1331651
  36. B. J. Chen and X. W. Sun, Semicond. Sci. Technol. 20, 801 (2005). https://doi.org/10.1088/0268-1242/20/8/028
  37. Y. Li, D.-Q. Zhang, L. Duan, R, Zhang, L.-D. Wang, and Y. Qiu, Appl. Phys. Lett. 90, 012119 (2007). https://doi.org/10.1063/1.2429920
  38. H. W. Choi, S. Y. Kim, W.-K. Kim, K. Hong, and J.-L. Lee, J. Appl. Phys. 100, 064106 (2006). https://doi.org/10.1063/1.2349552
  39. S. Y. Kim and J.-L. Lee, Appl. Phys. Lett. 87, 232105 (2005). https://doi.org/10.1063/1.2135874
  40. I.-M. Chan, T.-Y. Hsu, and F. C. Hong, Appl. Phys. Lett. 81, 1899 (2002). https://doi.org/10.1063/1.1505112
  41. X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, Appl. Phys. Lett. 87, 153508 (2005). https://doi.org/10.1063/1.2099520
  42. K. Hong, K. Kim, S. Kim, Y. H. Song, H. J. Kim, K. H. Song, K. C. Ahn, Y. H. Tak, and J.-L. Lee, J. Electrochem. Soc. 156, H648 (2009). https://doi.org/10.1149/1.3148857
  43. S. Kim, K. Hong, K. Kim, I. Lee, K.-B. Kim, D. Y. Lee, T.-Y. Kim, and J.-L. Lee, J. Electrochem. Soc. 157, J347 (2010). https://doi.org/10.1149/1.3476308
  44. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 123, 4304 (2001). https://doi.org/10.1021/ja003693s
  45. C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett. 77, 904 (2000). https://doi.org/10.1063/1.1306639
  46. M. Probst and R. Haight, Appl. Phys. Lett. 71, 202 (1997). https://doi.org/10.1063/1.119500
  47. Y. Kawamura, K. Goushi, J. Brooks, and C. Adachi, Appl. Phys.Lett. 86, 071104 (2005). https://doi.org/10.1063/1.1862777
  48. J. Huang, W.-J. Hou, J.-H. Li, G. Li, and Y. Yang, Appl. Phys. Lett. 89, 133509 (2006). https://doi.org/10.1063/1.2357938
  49. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Adv. Mater. 14, 193 (2002).
  50. P. T. Worthing and W. L. Barnes, Appl. Phys. Lett. 29, 3035 (2001).
  51. C. F. Madigan, M. H. Lu, and J. C. Sturm, Appl. Phys. Lett. 76, 1650 (2000). https://doi.org/10.1063/1.126124
  52. S. Moller and S. R. Forrest, J. Appl. Phys. 91, 3324 (2002). https://doi.org/10.1063/1.1435422
  53. T. Tsutsui, M. Yashiro, H. Yokogawa, K. Kawano, and M. Yokoyama, Adv. Mater. 13, 1149 (2001). https://doi.org/10.1002/1521-4095(200108)13:15<1149::AID-ADMA1149>3.0.CO;2-2
  54. L. H. Smith, J. A. Wasey, and W. L. Barnes, Appl. Phys. Lett. 84, 2986 (2004). https://doi.org/10.1063/1.1712036
  55. Y. Lee, S. Kim, J. Huh, G. Kim, Y. Lee, S. Cho, Y. Kim, and Y. R. Do, Appl. Phys. Lett. 82, 3779 (2003). https://doi.org/10.1063/1.1577823
  56. V. Bulovic, V. B. Khalfin, G. Gu, and P. E. Burrows, Phys. Rev. B 58, 3730 (1998). https://doi.org/10.1103/PhysRevB.58.3730
  57. R. Coehoom, W. F. Pasveer, P. A. Bobbert, and M. A. J. Michels, Phys. Rev. B 72, 155206 (2005). https://doi.org/10.1103/PhysRevB.72.155206
  58. Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S. R. Forrest, Phys. Rev. B 54, 13748 (1996). https://doi.org/10.1103/PhysRevB.54.13748
  59. X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, and K. Leo, Appl. Phys. Lett. 78, 410 (2001). https://doi.org/10.1063/1.1343849
  60. D.-D. Zhang, J. Feng, Y.-F. Liu, Y.-Q. Zhong, Y. Bai, Y. Jin, G.-H. Xie, Q. Xue, Y. Zhao, S.-Y. Liu, and H.-S. Sun, Appl. Phys. Lett. 94, 223306 (2009). https://doi.org/10.1063/1.3148657
  61. M.-R. Choi, S.-H. Woo, T.-H. Han, K.-G. Lim, S.-Y. Min, W. M. Yun, O. K. Kwon, H.-K. Shin, M.-S. Kim, T. Noh, J. H. Park, K.-H. Shin, J. Jang, and T.-W. Lee, Chemsuschem 4, 363 (2011). https://doi.org/10.1002/cssc.201000338
  62. K. Fehse, K. Walzer, K. Leo, W. Lovenich, and A. Elschner, Adv. Mater. 19, 441 (2007). https://doi.org/10.1002/adma.200602156
  63. J. Li, L. Hu, J. Liu, L. Wang, T. J. Marks, and G. Gruner, Appl. Phys. Lett. 93, 083306 (2008). https://doi.org/10.1063/1.2970049
  64. A. Benor, S.-Y. Takizawa, P. Chen, C. Perez-Bolvar, and P. Anzenbacher, Appl. Phys. Lett. 94, 193301 (2009). https://doi.org/10.1063/1.3132059
  65. S. Choulis, V. Choong, M. Mathai, and F. So, Appl. Phys. Lett. 87, 113503 (2005). https://doi.org/10.1063/1.2042635
  66. G. B. Murdoch, M. Geiner, M. G. Helander, Z. B. Wang, and Z. H. Lu, Appl. Phys. Lett. 93, 083309 (2008). https://doi.org/10.1063/1.2966140
  67. I.-Min, Chan and F. C. Hong, Thin Solid Films 450, 304 (2004). https://doi.org/10.1016/j.tsf.2003.10.022
  68. S. Y. Kim, K.-B. Kim, Y.-H. Tak, and J.-L. Lee, Appl. Phys. Lett. 86, 133504 (2005). https://doi.org/10.1063/1.1894605
  69. H. You, Y. Dai, Z. Zhang, and D. Ma, J. Appl. Phys. 101, 026105 (2007). https://doi.org/10.1063/1.2430511
  70. J. Luo, L. Xiao, Z. Chen, B. Qu, and Q. Gong, J. Appl. D 43, 385101 (2010). https://doi.org/10.1088/0022-3727/43/38/385101
  71. S. Y. Kim, J. M. Baik, H. K. Yu, Y.-H. Tak, and J.-L. Lee, Appl. Phys. Lett. 87, 072105 (2005). https://doi.org/10.1063/1.2012534
  72. J. Wu, J. Hou, Y. Cheng, Z. Xie, and L. Wang, Semicond. Sci. Technol. 22, 824 (2007). https://doi.org/10.1088/0268-1242/22/7/027
  73. J. Meyer, T. Winkler, S. Hamwi, S. Schmale, H.-H. Johannes, T. Weimann, P. Hinze, W. Kowlasky, and T. Riedl, Adv. Mater. 20, 3839 (2008). https://doi.org/10.1002/adma.200800949
  74. M. Knupfer and H. Peisert, Phys. Status Solidi A 201, 1055 (2004). https://doi.org/10.1002/pssa.200304332
  75. M. Knupfer and G. Paasch, J. Vac. Sci. Technol. A 23, 1072 (2005).
  76. J. Cao, X. Y. Jiang, and Z. L. Zhang, Appl. Phys. Lett. 89, 252108 (2006). https://doi.org/10.1063/1.2408647
  77. S. A. Choulis, V.-E. Choong, A. Patwardhan, M. K. Mathai, and F. So, Adv. Funct. Mater. 16, 1075 (2006). https://doi.org/10.1002/adfm.200500443
  78. I.-H. Hong, M.-W. Lee, Y.-M. Koo, H. Jeong, T.-S. Kim, and O.-K. Song, Appl. Phys. Lett. 87, 063502 (2005). https://doi.org/10.1063/1.2005399
  79. S. Y. Kim and J.-L. Lee, Org. Electron. 9, 678 (2008). https://doi.org/10.1016/j.orgel.2008.04.010
  80. S. Y. Kim, K. Hong, K. Kim, H. K. Yu, W.-K. Kim, and J.-L. Lee, J. Appl. Phys. 103, 076101 (2008). https://doi.org/10.1063/1.2874495
  81. N. D. Lang and W. Kohn, Phys. Rev. B 3, 1215 (1971). https://doi.org/10.1103/PhysRevB.3.1215
  82. Z. Qiao, R. Latz, and D. Mergel, Thin Solid Films 466, 250 (2004). https://doi.org/10.1016/j.tsf.2004.02.094
  83. S. Y. Kim, K. Hong, and J.-L. Lee, Appl. Phys. Lett. 90, 183508 (2007). https://doi.org/10.1063/1.2734916
  84. A. Y.-Y. Tam, D. P.-K. Tsang, M.-Y. Chan, N. Zhu, and V. W.-W. Yam, Chem. Commun. 47, 3383 (2011). https://doi.org/10.1039/c0cc05538g
  85. S. C. Gong, J. G. Jang, H. J. Chang, and J.-S. Park, Synthetic Mat. 161, 823 (2011). https://doi.org/10.1016/j.synthmet.2011.02.007
  86. M. Yamada, M. Matsumura, and Y. Maeda, Thin Solid Films 519, 3352 (2011). https://doi.org/10.1016/j.tsf.2010.12.097
  87. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, ACS Nano 4, 43 (2010). https://doi.org/10.1021/nn900728d
  88. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, ACS Nano 4, 2955 (2010). https://doi.org/10.1021/nn1005232
  89. L. Hu, J. Li, J. Liu, G. Gruner, and T. Marks, Nanotechnology 21, 155202 (2010) https://doi.org/10.1088/0957-4484/21/15/155202
  90. Y.-M. Chien, F. Lefevre, I. Shin, and R. Izquierdo, Nanotechnology 21, 134020 (2010). https://doi.org/10.1088/0957-4484/21/13/134020
  91. T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, Y. Z. Li, L. Dai, and G. G. Qin, Appl. Phys. Lett. 96, 133301 (2010). https://doi.org/10.1063/1.3373855
  92. W. Gaynor, G. F. Burkhard, M. D. McGehee, and P. Peumans, Adv. Mater., doi: 10.1002/adma.2011005 (2011).
  93. J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 8, 689 (2008). https://doi.org/10.1021/nl073296g
  94. D. Azulai, T. Belenkova, H. Gilon, Z. Barkay, and G. Markovich, Nano Lett. 9, 4246 (2009). https://doi.org/10.1021/nl902458j
  95. S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, Appl. Phys. Lett. 92, 023306 (2008). https://doi.org/10.1063/1.2835044
  96. T. Satoh, H. Fujikawa, and Y. Taga, Appl. Phys. Lett. 87, 143503 (2005). https://doi.org/10.1063/1.2077835
  97. S. Y. Kim, K. Hong, J.-L. Lee, K. H. Choi, K. H. Song, and K. C. Ahn, Sol-St. Electron. 52, 1 (2008). https://doi.org/10.1016/j.sse.2007.07.037
  98. S. Y. Kim, K. Hong, J. H. Son, G. H. Jung, K. H. Choi, K. H. Song, K. C. Ahn, and J.-L. Lee, Jpn. J. Appl. Phys. 47, 862 (2008). https://doi.org/10.1143/JJAP.47.862
  99. H. Kim, J. S. Horwitz, W. H. Kim, A. J. Makinen, Z. H. Kafafi, and D. B. Chrisey, Thin Solid Films 420, 539 (2002).
  100. T. Minami, K. Oohashi, S. Takata, T. Mouri, and N. Ogawa, Thin Solid Films 193, 721 (1990).
  101. G. A. Hirata, J. McKittrick, J. Siquerios, O. A. Lopez, T. Cheeks, O. Contreras, and J. Y. Yi, J. Vac. Sci. Technol. A 14, 791 (1996). https://doi.org/10.1116/1.580391
  102. K. Tominaga, N. Umezu, I. Mori, T. Ushiro, T. Moriga, and I. Nakabayashi, J. Vac. Sci. Technol. A 16, 1213 (1998). https://doi.org/10.1116/1.581261
  103. S. B. Qadri, H. Kim, J. S. Horwitz, and D. B. Chrisey, J. Appl. Phys. 88, 6564 (2000). https://doi.org/10.1063/1.1320032
  104. Y. Onai and T. Uchida, Thin Solid Films 516, 5911 (2008). https://doi.org/10.1016/j.tsf.2007.10.043
  105. J.-A. Jeong, H.-K. Kim, J.-Y. Lee, J.-H. Lee, H.-D. Bae, and Y.-H. Tak, Thin Solid Films 517, 4043 (2009). https://doi.org/10.1016/j.tsf.2009.01.147
  106. Y. Lee, J. Kim, J. N. Jang, I. H. Yang, S. Kwon, M. Hong, D. C. Kim, K. S. Oh, S. J. Yoo, B. J. Lee, and W.-G. Jang, Thin Solid Films 517, 4019 (2009). https://doi.org/10.1016/j.tsf.2009.01.185
  107. R. B. Pode, C. J. Lee, D. G. Moon, and J. I. Han, Appl. Phys. Lett. 84, 4614 (2004). https://doi.org/10.1063/1.1756674
  108. C. J. Lee, R. B. Pode, J. I. Han, and D. G. Moon, Appl. Phys. Lett. 89, 123501 (2006). https://doi.org/10.1063/1.2355464
  109. S. Y. Kim, D. G. Moon, C. J. Lee, and J. I. Han, Thin Solid Films 517, 2035 (2009). https://doi.org/10.1016/j.tsf.2008.10.003
  110. K. Hong, K. Kim, S. Kim, I. Lee, S. Cho, S. Yoo, H. W. Choi, N.-Y. Lee, Y.-H. Tak, and J.-L. Lee, J. Phys. Chem. C 115, 3453 (2011). https://doi.org/10.1021/jp109943b
  111. C.-C. Lee, S.-H. Chen, and C.-C. Jaing, Appl. Optics 35, 5698 (1996). https://doi.org/10.1364/AO.35.005698
  112. K. Hong and J.-L. Lee, Electrochem. Solid St. 11, H29 (2008). https://doi.org/10.1149/1.2817479
  113. H. Cho, C. Yun, and S. Yoo, Opt. Express 18, 3404 (2010). https://doi.org/10.1364/OE.18.003404
  114. H. A. Atwater and A. Polman, Nature Mater. 9, 205 (2010). https://doi.org/10.1038/nmat2629
  115. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaus, and T. W. Ebbesen, Phy. Rev. Lett. 92, 107401 (2004). https://doi.org/10.1103/PhysRevLett.92.107401
  116. S. Wedge, A. Giannattasio, and W. L. Barnes, Org. Electron. 8, 136 (2007). https://doi.org/10.1016/j.orgel.2006.07.003
  117. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, Nature Mater. 9, 193 (2010). https://doi.org/10.1038/nmat2630
  118. K. S. Yook, S. O. Jeon, C. W. Joo, and J. Y. Lee, Appl. Phys. Lett. 93, 013301 (2008). https://doi.org/10.1063/1.2955528
  119. H. A. Macleod, Thin-Film Optical Filters, Taylor & Francis (2001).
  120. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, Nano Lett. 6, 1880 (2006). https://doi.org/10.1021/nl0608543
  121. Y. Zhou, L. Hu, and G. Gruner, Appl. Phys. Lett. 88, 123109 (2006). https://doi.org/10.1063/1.2187945
  122. K. S. Novoselov, A. K. Gelm, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grlgorleva, and A. A. Flrsov, Science 306, 666 (2004). https://doi.org/10.1126/science.1102896
  123. Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Nature 6, 183 (2005).
  124. A. K. Gelm and K. S. Novoselov, Nat. Matter. 6, 183 (2007). https://doi.org/10.1038/nmat1849
  125. K. S. Choi, Y. Park, K.-C. Kwon, J. Kim, C. K. Kim, S. Y. Kim, K. Hong, and J.-L. Lee, J. Electrochem. Soc. 158, J231 (2011). https://doi.org/10.1149/1.3593044
  126. T. Fang, A. Konar, H. Xing, and D. Jena, Appl. Phys. Lett. 91, 092109 (2007). https://doi.org/10.1063/1.2776887
  127. M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, Adv. Mater. 22, 4378 (2010). https://doi.org/10.1002/adma.201001395
  128. M.-G. Kang and L. J. Guo, Adv. Mater. 19, 1391 (2007). https://doi.org/10.1002/adma.200700134
  129. T. Nakamura, N. Tsutsumi, N. Juni, and H. Fujii, J. Appl. Phys. 97, 054505 (2005). https://doi.org/10.1063/1.1858875
  130. N. C. Greenham, R. H. Friend, and D. D. C. Bradley, Adv. Mater. 6, 491 (1994). https://doi.org/10.1002/adma.19940060612
  131. Y. Sun and S. R. Forrest, Nature Photon. 2, 483 (2008). https://doi.org/10.1038/nphoton.2008.132
  132. M. Slootsky and S. R. Forrest, Appl. Phys. Lett. 94, 163302 (2009). https://doi.org/10.1063/1.3116644
  133. K. Hong, H. K. Yu, I. Lee, K. Kim, S. Kim, and J.-L. Lee, Adv. Mater. 22, 4890 (2010). https://doi.org/10.1002/adma.201002028
  134. T.-W. Koh, J.-M. Choi, S. Lee, and S. Yoo, Adv. Mater. 22, 1849 (2010). https://doi.org/10.1002/adma.200903375
  135. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). https://doi.org/10.1038/nature01937
  136. K. Y. Yang, K. C. Choi, and C. W. Ahn, Appl. Phys. Lett. 94, 173301 (2009). https://doi.org/10.1063/1.3125249
  137. K. Y. Yang, K. C. Choi, and C. W. Ahn, Opt. Express 17, 11495 (2009). https://doi.org/10.1364/OE.17.011495
  138. W. H. Koo, S. M. Jeong, S. Nishimura, F. Araoka, K. Ishikawa, T. Toyooka, and H. Takezoe, Adv. Mater. 23, 1003 (2011). https://doi.org/10.1002/adma.201003357
  139. W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, Nat. Photon. 4, 222, (2010). https://doi.org/10.1038/nphoton.2010.7
  140. D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, J. Mod. Opt. 41, 325 (1994). https://doi.org/10.1080/09500349414550361
  141. M. Thomschke, R. Nitsche, M. Furno, and K. Leo, Appl. Phys. Lett. 94, 083303 (2009). https://doi.org/10.1063/1.3088854
  142. S. Moller and S. R. Forrest, J. Appl. Phys. 91, 3324 (2002). https://doi.org/10.1063/1.1435422
  143. J.-H. Lee, Y.-H. Ho, K.-Y. Chen, H.-Y. Lin, J.-H. Fang, S.-C. Hsu, J.-R. Lin, and M.-K. Wei, Opt. Express 16, 21184 (2008). https://doi.org/10.1364/OE.16.021184
  144. Y. R. Do, Y.-C. Kim, Y.-W. Song, and Y.-H. Lee, J. Appl. Phys. 96, 7629 (2004). https://doi.org/10.1063/1.1815049
  145. OLED-Info.com: http://www.oled-info.com/lg/universal_ display_presents_significant_advances_in_whiteoled (2011).
  146. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, Nature 459, 234 (2009). https://doi.org/10.1038/nature08003
  147. M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu, and Z. H. Lu, Science 332, 944 (2011).

Cited by

  1. Transient and d.c. analysis of the operation mechanism of light-emitting electrochemical cells vol.100, pp.1, 2011, https://doi.org/10.1209/0295-5075/100/18001
  2. Phase-controllable copper oxides for an efficient anode interfacial layer in organic light-emitting diodes vol.22, pp.5, 2011, https://doi.org/10.1039/c1jm14218f
  3. Charge Generation Mechanismof Metal Oxide Interconnectionin Tandem Organic Light Emitting Diodes vol.116, pp.10, 2011, https://doi.org/10.1021/jp212090b
  4. Ultrasmooth Silver ThinFilm on PEDOT:PSS NucleationLayer for Extended Surface Plasmon Propagation vol.4, pp.3, 2011, https://doi.org/10.1021/am201391f
  5. Re-condensation and decomposition of Tris(8-hydroxyquinoline)-aluminum in a vapor transport ampoule vol.357, pp.None, 2012, https://doi.org/10.1016/j.jcrysgro.2012.07.004
  6. Modulation of surface plasmons coupling for enhancement of optical transmittance of silver-coated alkaline-earth metal films vol.22, pp.43, 2011, https://doi.org/10.1039/c2jm32244g
  7. Nanomechanical properties of molecular-scale bridges as visualised by intramolecular electronic energy transfer vol.4, pp.1, 2013, https://doi.org/10.1039/c2sc21505e
  8. Light extraction enhancement in organic light-emitting diodes based on localized surface plasmon and light scattering double-effect vol.1, pp.28, 2011, https://doi.org/10.1039/c3tc30197d
  9. Organic Light-Emitting Diode Outcoupling Enhancement Using Buffer Layers vol.584, pp.1, 2011, https://doi.org/10.1080/15421406.2013.849427
  10. Near-Field Microwave Investigation of Electrical Properties of Graphene-ITO Electrodes for LED Applications vol.9, pp.6, 2011, https://doi.org/10.1109/jdt.2013.2251608
  11. Investigation of Light Extraction Efficiency and Internal Quantum Efficiency in High-Power Vertical Blue Light-Emitting Diode with 3.3 W Output Power vol.52, pp.10, 2013, https://doi.org/10.7567/jjap.52.10ma09
  12. Direct Nanoimprint of Metal Bilayer for Tunnable Metal Photonic Properties vol.52, pp.10, 2011, https://doi.org/10.7567/jjap.52.10mc09
  13. Optical Simulation Study on the Effect of Diffusing Substrate and Pillow Lenses on the Outcoupling Efficiency of Organic Light Emitting Diodes vol.17, pp.3, 2013, https://doi.org/10.3807/josk.2013.17.3.269
  14. Thin LED light module using the inclined edge and inhomogeneous pattern reflection of a light guide plate vol.9, pp.1, 2011, https://doi.org/10.1007/s13391-013-3184-1
  15. Recent Advances in Transition Metal Complexes and Light‐Management Engineering in Organic Optoelectronic Devices vol.26, pp.31, 2011, https://doi.org/10.1002/adma.201306133
  16. Organic Light - Emitting Diodes and their Applications vol.357, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/ddf.357.29
  17. Graphene diffusion barrier for forming ohmic contact on N-polar n-type GaN for high-power vertical-geometry light-emitting diodes vol.7, pp.4, 2011, https://doi.org/10.7567/apex.7.046501
  18. 쌍극자 광원의 진동방향, Mie 산란자, 그리고 Pillow 렌즈가 OLED의 광추출효율에 미치는 영향에 대한 시뮬레이션 연구 vol.25, pp.4, 2011, https://doi.org/10.3807/kjop.2014.25.4.193
  19. Fabrication and surface plasmon coupling studies on the dielectric/Ag structure for transparent conducting electrode applications vol.4, pp.10, 2011, https://doi.org/10.1364/ome.4.002078
  20. Phenomenological model for the interpretation of impedance/admittance spectroscopy results in polymer light-emitting electrochemical cells vol.18, pp.11, 2011, https://doi.org/10.1007/s10008-014-2547-3
  21. Simulation Study on the Effect of the Emitter Orientation and Photonic Crystals on the Outcoupling Efficiency of Organic Light-Emitting Diodes vol.18, pp.6, 2014, https://doi.org/10.3807/josk.2014.18.6.732
  22. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes vol.3, pp.5, 2011, https://doi.org/10.1039/c4tc02474e
  23. Origin of light manipulation in nano-honeycomb structured organic light-emitting diodes vol.3, pp.8, 2011, https://doi.org/10.1039/c4tc02596b
  24. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes vol.106, pp.22, 2011, https://doi.org/10.1063/1.4922040
  25. Single-pass and omniangle light extraction from light-emitting diodes using transformation optics vol.40, pp.23, 2015, https://doi.org/10.1364/ol.40.005626
  26. Elucidating the Crucial Role of Hole Injection Layer in Degradation of Organic Light-Emitting Diodes vol.7, pp.5, 2011, https://doi.org/10.1021/am5072628
  27. Efficiency Enhancement in Polymer Light-Emitting Diodes via Embedded Indium–Tin–Oxide Nanorods vol.7, pp.14, 2011, https://doi.org/10.1021/acsami.5b01117
  28. 유전체 다층 거울이 유기발광다이오드의 광효율 향상에 미치는 영향에 관한 광학 시뮬레이션 연구 vol.26, pp.3, 2015, https://doi.org/10.3807/kjop.2015.26.3.139
  29. Light out-coupling enhancement of organic light emitting devices using nano-structured substrate produced by rapid thermal processing vol.17, pp.7, 2011, https://doi.org/10.1088/2040-8978/17/7/075402
  30. Microcavity effect using nanoparticles to enhance the efficiency of organic light-emitting diodes vol.23, pp.15, 2011, https://doi.org/10.1364/oe.23.019863
  31. Simultaneously enhanced device efficiency, stabilized chromaticity of organic light emitting diodes with lambertian emission characteristic by random convex lenses vol.27, pp.7, 2016, https://doi.org/10.1088/0957-4484/27/7/075202
  32. Area-selective external light extraction for metal bus equipped large area transparent organic light-emitting diodes vol.24, pp.5, 2011, https://doi.org/10.1364/oe.24.005356
  33. Photon management in solution-processed organic light-emitting diodes: a review of light outcoupling micro- and nanostructures vol.6, pp.3, 2011, https://doi.org/10.1117/1.jpe.6.030901
  34. Improved out-coupling efficiency from a green microcavity OLED with a narrow band emission source vol.37, pp.None, 2011, https://doi.org/10.1016/j.orgel.2016.05.041
  35. Recent advances in flexible organic light-emitting diodes vol.4, pp.39, 2011, https://doi.org/10.1039/c6tc03230c
  36. Highly Efficient Deep Blue Organic Light-Emitting Diodes Based on Imidazole: Significantly Enhanced Performance by Effective Energy Transfer with Negligible Efficiency Roll-off vol.8, pp.42, 2011, https://doi.org/10.1021/acsami.6b10004
  37. Determining molecular orientationviasingle molecule SERS in a plasmonic nano-gap vol.9, pp.44, 2017, https://doi.org/10.1039/c7nr05107g
  38. Enhanced light out-coupling efficiency and reduced efficiency roll-off in phosphorescent OLEDs with a spontaneously distributed embossed structure formed by a spin-coating method vol.7, pp.69, 2011, https://doi.org/10.1039/c7ra06921a
  39. A dodecanethiol-functionalized Ag nanoparticle-modified ITO anode for efficient performance of organic light-emitting devices vol.7, pp.62, 2011, https://doi.org/10.1039/c7ra07080b
  40. Improvement of light outcoupling efficiency of organic light-emitting diodes utilizing microlens array fabricated using poly oxymethylene mold vol.651, pp.1, 2011, https://doi.org/10.1080/09273948.2017.1338886
  41. Reshaping the luminance distribution of OLED lighting using optical films vol.18, pp.4, 2011, https://doi.org/10.1080/15980316.2017.1377124
  42. Experimental and Theoretical Study of a Cadmium Coordination Polymer Based on Aminonicotinate with Second-Timescale Blue/Green Photoluminescent Emission vol.56, pp.6, 2011, https://doi.org/10.1021/acs.inorgchem.7b00110
  43. Significant color space blue-shift of green OLED emitter with sustaining lifetime and substantial efficiency enhancement vol.111, pp.9, 2011, https://doi.org/10.1063/1.5000499
  44. Designing Single-Ion Magnets and Phosphorescent Materials with 1-Methylimidazole-5-carboxylate and Transition-Metal Ions vol.56, pp.22, 2011, https://doi.org/10.1021/acs.inorgchem.7b02020
  45. Optical Energy Losses in Organic-Inorganic Hybrid Perovskite Light-Emitting Diodes vol.6, pp.17, 2011, https://doi.org/10.1002/adom.201800667
  46. Chiral coordination polymers based on d10 metals and 2-aminonicotinate with blue fluorescent/green phosphorescent anisotropic emissions vol.47, pp.26, 2011, https://doi.org/10.1039/c8dt01159a
  47. A strain induced subwavelength-structure for a haze-free and highly transparent flexible plastic substrate vol.10, pp.31, 2011, https://doi.org/10.1039/c8nr00998h
  48. Realization of specific illuminance distributions of OLED lightings using inverted microlens films vol.19, pp.3, 2011, https://doi.org/10.1080/15980316.2018.1477074
  49. Study on the light extraction mechanism of organic light-emitting diodes with corrugated Ag cathode made by soft nanoimprint vol.57, pp.8, 2011, https://doi.org/10.7567/jjap.57.080306
  50. Recent advances in flexible and wearable organic optoelectronic devices vol.39, pp.1, 2018, https://doi.org/10.1088/1674-4926/39/1/011011
  51. Symmetrical Emission Transparent Organic Light-Emitting Diodes With Ultrathin Ag Electrodes vol.10, pp.3, 2011, https://doi.org/10.1109/jphot.2018.2823759
  52. Marching Toward Highly Efficient, Pure‐Blue, and Stable Thermally Activated Delayed Fluorescent Organic Light‐Emitting Diodes vol.28, pp.43, 2018, https://doi.org/10.1002/adfm.201802558
  53. Simple method for fabricating scattering layer using random nanoscale rods for improving optical properties of organic light-emitting diodes vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-32538-4
  54. Integrated ray-wave optics modeling for macroscopic diffractive lighting devices vol.27, pp.26, 2011, https://doi.org/10.1364/oe.27.037910
  55. Performance and Uniformity Improvement in Ultrathin Cu(In,Ga)Se2 Solar Cells with a WOx Nanointerlayer at the Absorber/Transparent Back-Contact Interface vol.11, pp.1, 2011, https://doi.org/10.1021/acsami.8b15930
  56. High efficiency color-tunable organic light-emitting diodes with ultra-thin emissive layers in blue phosphor doped exciplex vol.114, pp.3, 2011, https://doi.org/10.1063/1.5082011
  57. Nano-modified indium tin oxide incorporated with ideal microlens array for light extraction of OLED vol.7, pp.13, 2011, https://doi.org/10.1039/c9tc00195f
  58. High-Performance Large-Scale Flexible Optoelectronics Using Ultrathin Silver Films with Tunable Properties vol.11, pp.30, 2011, https://doi.org/10.1021/acsami.9b08289
  59. Recent Advances in the Optimization of Organic Light‐Emitting Diodes with Metal‐Containing Nanomaterials vol.19, pp.8, 2011, https://doi.org/10.1002/tcr.201800204
  60. Enhanced Light Extraction from Bottom Emission OLEDs by High Refractive Index Nanoparticle Scattering Layer vol.9, pp.9, 2011, https://doi.org/10.3390/nano9091241
  61. All‐Solution‐Processed Organic-Inorganic Hybrid Perovskite Light‐Emitting Diodes under Ambient Air vol.216, pp.22, 2019, https://doi.org/10.1002/pssa.201900642
  62. Micro Organic Light Emitting Diode Arrays by Patterned Growth on Structured Polypyrrole vol.8, pp.10, 2011, https://doi.org/10.1002/adom.201902105
  63. High-refractive-index capping layer improves top-light-emitting device performance vol.59, pp.13, 2020, https://doi.org/10.1364/ao.391419
  64. Material and device engineering for high-performance blue quantum dot light-emitting diodes vol.12, pp.25, 2011, https://doi.org/10.1039/d0nr02074e
  65. End-emitting nano organic light emitting diodes (OLEDs) with directional output vol.9, pp.9, 2020, https://doi.org/10.1515/nanoph-2020-0145
  66. 62‐4: Ultrathin Cu‐Ag Anode for High Light Outcoupling Efficiency by Eliminating Waveguide Mode in OLED vol.51, pp.1, 2011, https://doi.org/10.1002/sdtp.14024
  67. Progress in organic semiconducting materials with high thermal stability for organic light‐emitting devices vol.3, pp.1, 2011, https://doi.org/10.1002/inf2.12123
  68. Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method vol.30, pp.1, 2021, https://doi.org/10.1088/1674-1056/abbbf1
  69. Printing of flexible light emitting devices: A review on different technologies and devices, printing technologies and state-of-the-art applications and future prospects vol.118, pp.None, 2021, https://doi.org/10.1016/j.pmatsci.2020.100760
  70. Tackling light trapping in organic light-emitting diodes by complete elimination of waveguide modes vol.7, pp.26, 2011, https://doi.org/10.1126/sciadv.abg0355
  71. Fabrication of highly efficient blue top-emission organic light-emitting diodes on different reflective electrodes vol.95, pp.None, 2011, https://doi.org/10.1016/j.orgel.2021.106197
  72. High-Performance Transparent PEDOT: PSS/CNT Films for OLEDs vol.11, pp.8, 2011, https://doi.org/10.3390/nano11082067
  73. Recent Advances in Flexible Perovskite Light‐Emitting Diodes vol.8, pp.17, 2021, https://doi.org/10.1002/admi.202100441
  74. Light Outcoupling Using Oxide Nanostructures for Tandem White Organic Light-Emitting Diodes on Polymeric Anodes vol.17, pp.6, 2011, https://doi.org/10.1007/s13391-021-00303-x
  75. Recent advances in efficient emissive materials-based OLED applications: a review vol.56, pp.34, 2011, https://doi.org/10.1007/s10853-021-06503-y
  76. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices vol.10, pp.1, 2011, https://doi.org/10.1038/s41377-021-00501-0