DOI QR코드

DOI QR Code

Variations of hydrogen production and microbial community with heavy metals during fermentative hydrogen production

  • Cho, Yoona (Department of Environmental Engineering, Seoul National University of Science & Technology) ;
  • Lee, Taejin (Department of Environmental Engineering, Seoul National University of Science & Technology)
  • Published : 2011.03.25

Abstract

The effects of heavy metals on fermentative hydrogen production were examined based on metal type and concentration. Hydrogen production was stimulated by low concentrations of Cd and Zn but decreased at concentrations of 40 and 1 mg/L, respectively. Hydrogen production was inhibited for the entire range of Cu tested. The order of toxic density was Cu > Zn > Cd at concentrations below 2 mg/L but was Zn > Cu > Cd at higher concentrations. The depression rates of hydrogen production were calculated to be 225.8 $mL-H_2$/mg-Zn, 67.37 $mL-H_2$/mg-Cu, and 13.39 $mL-H_2$/mg-Cd. The presence of heavy metals caused a shift in microbial community. The presence of Clostridium genus bacteria, identified as Clostridium magum, Clostridium diolis, and Clostridium sp., resulted in active hydrogen production. Klebsiella genus bacteria were the most abundant of the class Gammaproteobacteria and also stimulated hydrogen production at relatively low concentrations of heavy metal. When Rhodocista pekingensis, Erwinia chrysanthemi strain 1015-1, Delftia sp. YF 31, or uncultured Klebsiella sp. clone F1 apr.32 were present, hydrogen production was seriously decreased.

Keywords

References

  1. D. Das, T. Nejat Veziroglu, Int. J Hydrogen Energy 26 (2001) 13. https://doi.org/10.1016/S0360-3199(00)00058-6
  2. Y. Kawagoshi, N. Hino, A. Fujimoto, M. Nakao, Y. Fujita, S. Sugimura, K. Furukawa, J. Biosci. Bioeng. 100 (2005) 524. https://doi.org/10.1263/jbb.100.524
  3. Y.-S. Jun, S.-H. Yu, K.-G. Ryu, T.-J. Lee, J. Microbiol. Biotechnol. 18 (2008) 1130.
  4. Y. Ueno, S. Haruta, M. Ishii, Y. Igarashi, Appl. Microbiol. Biotechnol. 57 (2001) 555. https://doi.org/10.1007/s002530100806
  5. C.-Y. Lin, Water Res. 27 (1993) 147. https://doi.org/10.1016/0043-1354(93)90205-V
  6. O. Yenigun, F. Kizilgun, G. Yilmazer, Environ. Technol. 17 (1996) 1269. https://doi.org/10.1080/09593331708616497
  7. M.S. Pedro, S. Haruta, M. Hazaka, R. Shimada, C. Yoshida, K. Hiura, M. Ishii, Y. Igarashi, J. Biosci. Bioeng. 91 (2001) 159.
  8. J. Baek, E. Choi, Y. Yun, S. Kim, M. Kim, J. Microbiol. Biotechnol. 16 (2006) 1210.
  9. B. Dabrock, H. Bahl, G. Gottschalk, Appl. Environ. Microbiol. 58 (1992) 1233.
  10. O. Mizno, R. Dinsdale, F.R. Hawkes, D.L. Hawkes, T. Noike, Bioresour. Technol. 73 (2000) 59. https://doi.org/10.1016/S0960-8524(99)00130-3
  11. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC, 2002.
  12. M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Anal. Chem. 28 (1956) 350. https://doi.org/10.1021/ac60111a017
  13. Y.J. Lee, T. Miyahara, T. Noike, J. Chem. Technol. Biotechnol. 77 (2002) 694. https://doi.org/10.1002/jctb.623
  14. B.E. Logan, S.E. Oh, I.S.S Kim, V. Ginkel, Environ. Sci. Technol. 36 (2002) 2530. https://doi.org/10.1021/es015783i
  15. H.Q. Yu, H.H.P. Fang, Environ. Technol. 22 (2001) 1459. https://doi.org/10.1080/09593332208618183
  16. X.J. Zheng, H.Q. Yu, J. Environ. Sci. Health 39 (2004) 89.
  17. G. Dinopoulou, T. Rudd, J.N. Lester, Biotechnol. Bioeng. 31 (1988) 958. https://doi.org/10.1002/bit.260310908
  18. G.C. Cha, T. Noike, Water Sci. Technol. 36 (1997) 247.
  19. S.-E. Oh, S. Van Ginkel, B.E. Logan, Environ. Sci. Technol. 37 (2003) 5416.
  20. I. Hussy, F.R. Hawkes, R. Dinsdale, D.L. Hawkes, Biotechnol. Bioeng. 84 (2003) 619. https://doi.org/10.1002/bit.10785
  21. H. Drake, K. Kusel, C. Matthies, Anton. Leeuw. 81 (2002) 203. https://doi.org/10.1023/A:1020514617738
  22. C.C. Chen, C.Y. Lin, M.C. Lin, Appl. Microbiol. Biotechnol. 57 (2002) 224.
  23. T. Zhang, H.H.P. Fang, Biotechnol. Lett. 22 (2000) 399. https://doi.org/10.1023/A:1005680803442
  24. M. Bomar, H. Hippe, B. Schink, FEMS Microbiol. Lett. (1991) 347.
  25. X. Wang, D. Hoefel, C.P. Saint, P.T. Monis, B. Jin, J. Appl. Microbiol. 103 (2007) 1415. https://doi.org/10.1111/j.1365-2672.2007.03370.x
  26. U.-J. Chang, W.-E. Chen, S.-Y. Shih, S.-J. Yu, J.-J. Lay, F.-S. Wen, C.-C. Huang, Appl. Microbiol. Biotechnol. 70 (2006) 598. https://doi.org/10.1007/s00253-005-0106-7
  27. C.H. Hung, C.H. Cheng, L.H. Cheng, C.M. Liang, C.Y. Lin, Int. J. Hydrogen Energy 33 (2008) 1586. https://doi.org/10.1016/j.ijhydene.2007.09.037
  28. L. Minnan, H. Jinli, W. Xuijuan, C. Jinzao, L. Chuannan, Z. Fengzhang, X. Liangshu, Res. Microbiol. 156 (2005) 76. https://doi.org/10.1016/j.resmic.2004.08.004
  29. L. Brynhildsen, Bo.V Lundgren, B. Allard, T. Rosswall, Appl. Environ. Microbiol. 54 (1988) 1689.
  30. T. Chandresh, S. Bhosale, D. Ranade, J. Microbiol. Biotechnol. 16 (2006) 870.
  31. X. Chen, Y. Sun, Z. Xiu., X. Li, D. Zhang, Int. J Hydrogen Energy 31 (2006) 539. https://doi.org/10.1016/j.ijhydene.2005.03.013
  32. G. Kovtunovych, T. Lytvynenko, V. Negrutska, O. Lar, S. Brisse, N. Kozyrovska, Res. Microbiol. 154 (2003) 587. https://doi.org/10.1016/S0923-2508(03)00148-7
  33. W. Nasser, M.L. Bouillant, G. Salmond, S. Reverchon, Mol. Microbiol. 29 (1998) 1391. https://doi.org/10.1046/j.1365-2958.1998.01022.x
  34. D. Zhang, H. Yang, W. Zhang, Z. Huang, S.-J. Liu, Int. J. Syst. Evol. Microbiol. 53 (2003) 1111. https://doi.org/10.1099/ijs.0.02500-0
  35. M. Drancourt, C. Bollet, A. Carta, P. Rousselier, Int. J. Syst. Evol. Microbiol. 51 (2001) 925. https://doi.org/10.1099/00207713-51-3-925
  36. W.-j. Lim, S.-k. Ryu, S.-r. Park, M.-k. Kim, C.-l. An, S.-y. Hong, E.-c. Shin, J.-y. Lee, Y.-p. Lim, H.-d. Yun, J. Microbiol. Biotechnol. 15 (2005) 302.

Cited by

  1. Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment vol.109, pp.None, 2011, https://doi.org/10.1016/j.biortech.2012.01.048
  2. Effects of arsenite and variation of microbial community on continuous bio-hydrogen production from molasses using a sequence batch reactor (SBR) vol.20, pp.4, 2011, https://doi.org/10.4491/eer.2015.077
  3. Inhibition of dark fermentative bio-hydrogen production: A review vol.41, pp.16, 2011, https://doi.org/10.1016/j.ijhydene.2016.03.057
  4. 음식물쓰레기의 혐기성 소화 시 중금속에 따른 수소생산량의 변화 vol.39, pp.2, 2011, https://doi.org/10.4491/ksee.2017.39.2.97
  5. Ni-hydrotalcite loading on carbon as co-catalyst for fermentative hydrogen production vol.47, pp.2, 2022, https://doi.org/10.1016/j.ijhydene.2021.10.062