DOI QR코드

DOI QR Code

Synthesis of amphiphilic silica/polymer composite nanoparticles as water-dispersible nano-absorbent for hydrophobic pollutants

  • Kim, Ju-Young (Department of Advanced Materials Engineering, College of Engineering, Kangwon National University) ;
  • Wainaina, James (Department of Advanced Materials Engineering, College of Engineering, Kangwon National University) ;
  • Na, Jae-Sik (Department of Chemical Engineering, Kwangwoon University)
  • Published : 2011.07.25

Abstract

Amphiphilic silica/polymer composite nanoparticles were synthesized through consecutive two-step surface modification process. Through the 1st surface-modification, silica nanoparticles having urethane acrylate moieties onto the surface were synthesized and named as VSP nanoparticles. At the 2nd surfacemodification process, VSP particles dispersed in DMSO were copolymerized with amphiphilic reactive oligomers (urethane acrylate nonionomers) to synthesize composite particles (VSP-UAN) where amphiphilic crosslinked polymers and silica nanoparticles were chemically connected with each other. On contacting with water, VSP-UAN formed nanoparticles (154-285 nm) in water without use of any dispersant, and these nanoparticles absorbed larger amount of hydrophobic molecules compared to amphiphilic polymer nanoparticles. On applied in ultrafiltration process, VSP-UAN nanoparticles showed 100% of retention recovery and higher permeate flux compared to amphiphilic polymer nanoparticles and nonionic surfactant (Triton X-100) micelles. This shows high potential in application of VSP-UAN composite nanoparticles as water-dispersible nano-absorbent for hydrophobic pollutants or hydrophobic drugs.

Keywords

References

  1. A. Vaseashta, D. Dimova-Malinovska, Sci. Technol. Adv. Mater. 6 (2005) 312. https://doi.org/10.1016/j.stam.2005.02.018
  2. W.T. Liu, J. Biosci. Bioeng. 102 (2006) 1. https://doi.org/10.1263/jbb.102.1
  3. R.O. Dunn Jr., J.F. Scamehorn, S.D. Christian, Sep. Sci. Technol. 20 (1985) 257. https://doi.org/10.1080/01496398508060679
  4. R.O. Dunn Jr., J.F. Scamehorn, S.D. Christian, Sep. Sci. Technol. 22 (1987) 763. https://doi.org/10.1080/01496398708068980
  5. M.K. Purkait, S. DasGupta, S. De, J. Membr. Sci. 250 (2005) 47. https://doi.org/10.1016/j.memsci.2004.10.014
  6. F.I. Talens-Alesson, R. Urbanski, J. Szymanowski, Colloid Surf. A 178 (2001) 71. https://doi.org/10.1016/S0927-7757(00)00495-7
  7. J. Sabate, M. Pujola, J. Llorens, J. Colloid Interface Sci. 246 (2002) 157. https://doi.org/10.1006/jcis.2001.8057
  8. S.R. Jadhav, N. Verma, A. Sharma, P.K. Bhattacharya, Sep. Purif. Technol. 24 (2001) 541. https://doi.org/10.1016/S1383-5866(01)00154-X
  9. K.H. Choo, S.C. Han, S.J. Choi, J. Ind. Eng. Chem. 13 (2) (2007) 163.
  10. D.A. Edwards, Z. Adeel, R.G. Luthy, Environ. Sci. Technol. 28 (1994) 1550. https://doi.org/10.1021/es00057a027
  11. J.W. Tester, H.R. Holgate, F.J. Armellini, P.A. Webley, W.R. Killiea, H.E. Barner, G.T. Hong, in: D.W. Tedder, F.G. Pohland (Eds.), ACS Symposium Series 518, American Chemical Society, Washington, DC, 1993.
  12. B. Krebbs-Yuill, J.H. Harwell, D.A. Sabatini, R.C. Knox, ACS Symposium Series 594, American Chemical Society, Washington, DC, 1995.
  13. D. Zhao, J.J. Pignatello, J.C. White, W. Braida, F. Ferrandino, Water Resour. Res. 37 (8) (2001) 2205. https://doi.org/10.1029/2001WR000287
  14. S. Deshpande, L. Wesson, D. Wade, D.A. Sabatini, J.H. Harwell, Water Res. 34 (3) (2000) 1030. https://doi.org/10.1016/S0043-1354(99)00195-5
  15. K.D. Pennell, L.M. Abriolar, W.J. Weber Jr., Environ. Sci. Technol. 27 (1993) 2332. https://doi.org/10.1021/es00048a005
  16. C.C. West, J.H. Harwell, Environ. Sci. Technol. 26 (2) (1992) 2324. https://doi.org/10.1021/es00036a002
  17. D.A. Edwards, R.G. Luthy, Z. Liu, Environ. Sci. Technol. 25 (1991) 127. https://doi.org/10.1021/es00013a014
  18. G.N. Kim, W.K. Choi, C.H. Jung, J. Ind. Eng. Chem. 13 (3) (2007) 406.
  19. J.Y. Kim, S.B. Shim, D.H. Shin, Korea Patent 0420371.
  20. J.Y. Kim, S.B. Shim, D.H. Shin, Korea Patent 0420372.
  21. W. Tungittiplakorn, L.W. Lion, C. Cohen, J.Y. Kim, Environ. Sci. Technol. 38 (2004) 1605. https://doi.org/10.1021/es0348997
  22. J.Y. Kim, S.B. Shim, J.K. Shim, J. Hazard. Mater. B116 (2004) 205. https://doi.org/10.1016/j.jhazmat.2004.08.031
  23. Z. Zeng, J. Yu, Z.X. Guo, J. Polym. Sci. 43 (2005) 2826. https://doi.org/10.1002/pola.20764
  24. D. Kafouris, M. Gradzielski, C.S. Patrickios, J. Polym. Sci. 46 (2008) 958. https://doi.org/10.1002/pola.22439
  25. Y. Rong, H.Z. Chen, G. Wu, M. Wang, J. Mater. Chem. Phys. 91 (2005) 370. https://doi.org/10.1016/j.matchemphys.2004.11.042
  26. H.L. Su, J.M. Hsu, J.P. Pan, C.S. Chern, J. Appl. Polym. Sci. 103 (2007) 3600. https://doi.org/10.1002/app.25313
  27. L. Zhou, W. Yuan, J. Yuan, X. Hong, J. Mater. Lett. 62 (2008) 1372. https://doi.org/10.1016/j.matlet.2007.08.057
  28. K. Daimatsu, H. Sugimoto, E. Nakanishi, T. Yasumura, K. Inomata, J. Appl. Polym. Sci. 109 (2008) 1611. https://doi.org/10.1002/app.28235
  29. T.V. Werne, T.E. Patten, J. Am. Chem. Soc. 121 (1999) 7409. https://doi.org/10.1021/ja991108l
  30. L. Gu, Z. Shen, C. Feng, Y. Li, G. Lu, X. Huang, J. Polym. Sci.: Part A: Polym. Chem. 46 (2008) 4056. https://doi.org/10.1002/pola.22748
  31. Q. Lan, L.F. Francis, F.S. Bates, J. Polym. Sci.: Part B: Polym. Phys. 45 (2007) 2284. https://doi.org/10.1002/polb.21251
  32. J. Pyun, S. Jia, T. Kowalewski, G.D. Patterson, K. Matyjasewski, Macromolecules 36 (2003) 5094. https://doi.org/10.1021/ma034188t
  33. A.E. Harrak, G. Carrot, J. Oberdisse, E.B. Christophe, F. Boue, Macromolecules 37 (2004) 6376. https://doi.org/10.1021/ma035959w
  34. J. Che, Y. Xiao, X. Wang, A. Pan, W. Yuan, X. Wu, Surf. Coat. Technol. 201 (2007) 4578. https://doi.org/10.1016/j.surfcoat.2006.09.124
  35. E. Pacard, M.A. Brook, A.M. Ragheb, C. Pichot, C. Chaix, Colloid Surf. B 47 (2006) 176. https://doi.org/10.1016/j.colsurfb.2005.12.008

Cited by

  1. 코아 가교 양친성 고분자 나노입자를 이용한 고함량 유용 약물 담지 고분자 나노입자 제조 vol.27, pp.1, 2011, https://doi.org/10.14478/ace.2015.1094
  2. Heat resisting and water-soluble chocolate polyesters containing azomethine group vol.35, pp.2, 2017, https://doi.org/10.1515/msp-2017-0018
  3. Sol–Gel-Processed Organic–Inorganic Hybrid for Flexible Conductive Substrates Based on Gravure-Printed Silver Nanowires and Graphene vol.11, pp.1, 2011, https://doi.org/10.3390/polym11010158
  4. Surface Properties of Structure-Controlled Silica Films Prepared Using Organic-Inorganic Hybrid Solutions vol.28, pp.1, 2011, https://doi.org/10.1007/s13233-020-8012-5