DOI QR코드

DOI QR Code

Separation of tetrahydrofuran and water using pressure swing distillation: Modeling and optimization

Lee, Ji-Hwan;Cho, Jung-Ho;Kim, Dong-Min;Park, Sang-Jin

  • Published : 20110200

Abstract

Computer simulations were performed to obtain highly pure tetrahydrofuran (THF) with over 99.9 mole% from the mixture of THF and water. Pressure swing distillation (PSD) was used since the azeotropic point between tetrahydrofuran and water can be varied with pressure. A commercial process simulator, PRO/II with PROVISION release 8.3, was used for the simulation studies. The Wilson liquid activity coefficient model was used to simulate the low pressure column, and the Peng-Robinson equation of state model was added to correct the vapor phase non-idealities for the modeling of the high pressure column. The most optimal reflux ratios and the most optimal feed stage locations that could minimize the total reboiler heat duties were determined.

Keywords

References

  1. R. H. Perry and D.W. Green, Perry's Chemical Engineers' Handbook, McGraw-Hill, New York (1997).
  2. J. P. Knapp and M. F. Doherty, Ind. Eng. Chem. Res., 31, 346 (1992). https://doi.org/10.1021/ie00001a047
  3. H. E. Roscoe and W. Dittmar, J. Chem. Soc., 12, 128 (1859).
  4. H. E. Roscoe, J. Chem. Soc., 13, 146 (1860).
  5. W. K. Lewis, US Patent, 1,676,700, July 10 (1928).
  6. J. Gmehling and R. Boelts, J. Chem. Eng. Data, 41, 202 (1996). https://doi.org/10.1021/je950228f
  7. Repke et al., Chem. Eng. Res. Design, 85, 492 (2007). https://doi.org/10.1205/cherd06092
  8. A. Klein and J.-U. Repke, Asia-Pac. J. Chem. Eng., 4, 893 (2009). https://doi.org/10.1002/apj.344
  9. G. Modla and P. Lang, Chem. Eng. Sci., 63, 2856 (2008). https://doi.org/10.1016/j.ces.2008.02.034
  10. Modla et al., Chem. Eng. Sci, 65, 870 (2010). https://doi.org/10.1016/j.ces.2009.09.037
  11. Modla and Lang, Ind. Eng. Chem. Res., 49, 3785 (2010). https://doi.org/10.1021/ie9019352
  12. W. L. Luyben, Ind. Eng. Chem. Res., 44, 5715 (2005). https://doi.org/10.1021/ie058006q
  13. W. L. Luyben, Ind. Eng. Chem. Res., 47, 2696 (2008). https://doi.org/10.1021/ie701695u
  14. W. L. Luyben, Ind. Eng. Chem. Res., 47, 2681 (2008). https://doi.org/10.1021/ie071366o
  15. J. R. Phimister and W. D. Seider, Ind. Eng. Chem. Res., 39, 122 (2000). https://doi.org/10.1021/ie9904302
  16. S. Ray, N. R. Singha and S. K. Ray, Chem. Eng. J., 149, 153 (2009). https://doi.org/10.1016/j.cej.2008.10.013
  17. J. H. Cho, J. K. Park and J. K. Jeon, J. Ind. Eng. Chem., 12(2), 206 (2006).
  18. J. H. Cho and J. K. Jeon, Korean J. Chem. Eng., 23(1), 1 (2006). https://doi.org/10.1007/BF02705684
  19. G. Soave, Chem. Eng. Sci., 35, 1197 (1972).
  20. D.Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fundam., 15, 58 (1976).
  21. M. H. Holmes and M. van Winkle, Ind. Eng. Chem., 62(1), 21 (1970). https://doi.org/10.1021/ie50721a005
  22. R.V. Orye and J.M. Prausnitz, Ind. Eng. Chem., 57(5), 18 (1965). https://doi.org/10.1021/ie50665a005
  23. G. M. Wilson, J. Amer. Chem. Soc., 86, 127 (1964). https://doi.org/10.1021/ja01056a002
  24. H. Renon and J. M. Prausnitz, J. Amer. Chem. Soc., 14, 135 (1968).
  25. J. A. Nelder and J. D. Mead, Comput. J., 7, 308 (1965). https://doi.org/10.1093/comjnl/7.4.308
  26. R. Munoz, J. B. Monton, M. C. Burguet and J. de la Torre, Sep. Pur. Technol., 50, 175 (2006). https://doi.org/10.1016/j.seppur.2005.11.022

Cited by

  1. Study on the Separation of Azeotrope of Tetrahydrofuran-Water Using a Combined Method of Extractive and General Distillation vol.803, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/amr.803.149
  2. A Computational Study on the Separation of Acetonitrile and Water Azeotropic Mixture Using Pressure Swing Distillation vol.46, pp.5, 2013, https://doi.org/10.1252/jcej.12we252
  3. Vapor-liquid equilibrium of ethanol/ethyl acetate mixture in ultrasonic intensified environment vol.31, pp.5, 2011, https://doi.org/10.1007/s11814-014-0011-9
  4. Isobutyl-Acetate와 Isobutyl-Alcohol 이성분계의 압력변환증류 공정 최적화 연구 vol.52, pp.3, 2011, https://doi.org/10.9713/kcer.2014.52.3.307
  5. State-of-the-Art Technologies for Separation of Azeotropic Mixtures vol.44, pp.4, 2011, https://doi.org/10.1080/15422119.2014.963607
  6. Energy-Saving Reduced-Pressure Extractive Distillation with Heat Integration for Separating the Biazeotropic Ternary Mixture Tetrahydrofuran-Methanol-Water vol.57, pp.40, 2011, https://doi.org/10.1021/acs.iecr.8b03123
  7. 1-프로판올과 벤젠 혼합물의 압력변환 증류공정을 통한 전산모사 및 공정 최적화 vol.19, pp.6, 2011, https://doi.org/10.5762/kais.2018.19.6.88
  8. Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater vol.122, pp.None, 2011, https://doi.org/10.1016/j.psep.2018.11.017
  9. Design and control of pressure‐swing distillation for separating ternary systems with three binary minimum azeotropes vol.65, pp.4, 2019, https://doi.org/10.1002/aic.16526
  10. Purification of tetrahydrofuran from its aqueous azeotrope by extractive distillation: Validation of model and simulation vol.54, pp.6, 2011, https://doi.org/10.1080/01496395.2018.1521835
  11. Purification of tetrahydrofuran from aqueous azeotropic solution: continuous adsorption operation using molecular sieves vol.207, pp.5, 2011, https://doi.org/10.1080/00986445.2019.1615471