DOI QR코드

DOI QR Code

Dredging Bottom Sediments of Seoha Weir at the Downstream of Kyongan Stream can be Used as a Feasible Pollutant Load Reduction Option in the Total Pollutant Load Management System of Kwangju City?

경안천 서하보 수저퇴적물 준설이 경기도 광주시 수질오염총량관리에 있어 추가적인 부하량 삭감수단으로써 타당한가?

  • Yu, Seung-Hoon (Department of Environmental Engineering & Biotechnology, Myongji University) ;
  • Lee, Bum-Yeon (Department of Environmental Engineering & Biotechnology, Myongji University) ;
  • Lee, Kang-Hyun (Department of Environmental Engineering & Biotechnology, Myongji University) ;
  • Park, Shin Jung (Department of Environmental Engineering & Biotechnology, Myongji University) ;
  • Lee, Chang-Hee (Department of Environmental Engineering & Biotechnology, Myongji University)
  • 유승훈 (명지대학교 환경생명공학과) ;
  • 이범연 (명지대학교 환경생명공학과) ;
  • 이강현 (명지대학교 환경생명공학과) ;
  • 박신정 (명지대학교 환경생명공학과) ;
  • 이창희 (명지대학교 환경생명공학과)
  • Received : 2010.07.31
  • Accepted : 2010.11.17
  • Published : 2011.01.30

Abstract

In order to assess the influences of bottom sediment on water quality, following measurement were made. (1) Estimations of pollutant loads from the bottom sediment based on mass balance concept, (2) measurements of pollutant concentrations in the sediment to assess the pollution level and influence potential, (3) in situ and laboratory measurements of Sediment Oxygen Demants (SOD) and pollutant load (sediment release) from bottom sediment. Analyses of inflow and outflow loadings using simple mass balance show that there are some variations found according to the pollutants. However, there is no consistent evidence that the sediment can be a source of pollutants. Pollutant concentrations in the sediment range 16~724.8 mg/kg (COD), 1.68 ~12.64 mg/kg (T-P), 5.6~76.8 mg/kg (T-N), 0.32~21.6 mg/kg ($NH_3$-N), 0.092~0.544 mg/kg ($NO_2$-N), 4.8~18.4 mg/kg ($NO_3$-N), and 1.59~11.23 mg/kg ($PO_4$-P). Measured SOD ranges $0.190{\sim}0.802g{\cdot}m^{-2}{\cdot}d^{-1}$ and measured release rate ranges $-1618.42{\sim}10mg/m^2{\cdot}d$(COD), $-12{\sim}16mg/m^2{\cdot}d$(T-P), $-197.37{\sim}140mg/m^2{\cdot}d$(T-N), $0.4{\sim}74.32mg/m^2{\cdot}d$($NH_3$-N), $-2.04{\sim}0.8mg/m^2{\cdot}d$ ($NO_2$-N), $-70{\sim}40mg/m^2{\cdot}d$ ($NO_3$-N), and $-26.11{\sim}28.55mg/m^2{\cdot}d$($PO_4$-P). All study results indicate that bottom sediments in the Seoha weir show only limited effects on the water quality. It implies that sediment dredging is not an effective option or management measure to reduce pollutant loading.

Keywords

References

  1. 광주시(2004). 경기도 광주시 수질오염총량관리계획(1단계).
  2. 광주시(2007). 경기도 광주시 수질오염총량관리이행평가.
  3. 김도희(2002). 영양염 용출 측정에 관한 고찰. 한국환경과학회지, 11(12), pp. 1333-1337.
  4. 박혜경, 변명섭, 최명재, 김용진(2008). 남한강 하류수역에서 식물플랑크톤 증식의 영향인자 및 수중유기물 기원. 수질보전 한국물환경학회지, 24(5), pp. 556-562.
  5. 신유나, 박혜경, 이상원, 공동수(2006). 팔당호 충주호의 SOD 변화. 공동춘계학술발표회 논문집, 한국물환경학회.대한상하수도학회, pp. 22-30.
  6. 오종민, 조영철(2007). 소규모 저수지에서 퇴적물로부터 영양염류의 용출이 수질에 미치는 영향. 대한환경공학회지, 29(11), pp. 1217-1222.
  7. 유태종, 현미, 조재현(2003). 영산강 유역 하천 저질토의 영양염류 용출률 측정. 상하수도학회지, 17(3), pp. 409-418.
  8. 이순화(1993). 호수의 강제순환에 의한 저니의 영양염 용출 변화의 실내실험적 고찰. 대한환경공학회지, 15(4), pp. 653-663.
  9. 이요상, 이경식(2004). 대청호 유기퇴적물 분포 및 용출특성. 대한환경공학회지, 26(6), pp. 665-669.
  10. 이창희, 김은정(1998). 호소 및 하천 오염퇴적물 관리방안. 한국환경정책평가연구원.
  11. 이창희, 유혜진(2000). 수저퇴적물 환경기준 개발에 관한 연구. 한국환경정책평가연구원.
  12. 전상호(2004). 팔당호 퇴적물 준설 타당성 검토. 강원대학교 환경연구소.
  13. 정하영, 조경제(2003). 낙동강 하류수계에서 저질퇴적층의 SOD와 영양염 용출. 한국육수학회지, 36(3), pp. 322-335.
  14. 조대철, 권성현, 윤미해, 현준택, 허남수(2007). 호수 퇴적물의 호기 및 혐기조건에서의 용출특성에 대한 연구. 대한환경공학회지, 29(9), pp. 1003-1012.
  15. 조영철, 정세웅(2007). 남양호 퇴적물에서 영양염류 용출특성분석. 대한환경공학회지, 29(12), pp. 1345-1352.
  16. 해양수산부(2006). 마산만 특별관리해역 연안오염총량관리 기술지침.
  17. Belanger, B. T. (1981). Benthic oxygen demand in lake Apopka. Florida Water Res., 15, pp. 267-274. https://doi.org/10.1016/0043-1354(81)90120-2
  18. Bostrom, B., Jansson, M., and Forsberg, C. (1982). Phosphorus release from lake sediments. Arch. Hydrobiol Beih Ergebn. Linnol., 18, pp. 5-59.
  19. Chapra, S. C. (1997). Surface Water-quality Modeling, Mcgraw-Hill.
  20. Fisher, S. G. and Likens, G. E. (1977). Energy flow in Bear Brook, New Hampshire; An integrative approach to stream ecosystem metabolism. Eco. Monogr., 43, pp. 421-439.
  21. Istvanovices, V. (1994). Fractional composition, adsorption and release of sediment phosphorus in the Kis-Balaton Reservoir. Water Res., 28(3), pp. 717-726. https://doi.org/10.1016/0043-1354(94)90152-X
  22. Jensen, M. M., Lomstein, E., and Sorensen, J. (1990). Benthic ${NH_{4}}^{+}$ and ${NO_{3}}^{-}$ flux following sedimentation of a spring phytoplankton bloom in Aarhus Bright. Denmark, Mar. Ecol. Prog. Ser., 61, pp. 87-96. https://doi.org/10.3354/meps061087
  23. Kairesalo, T., Tuominen, L., Hartikainen, H., and Rankinen, K. (1995). The role of bacteria in the nutrient exchange between sediment and water in a flow-through system. Microb. Ecol., 29, pp. 129-144. https://doi.org/10.1007/BF00167160
  24. USEPA (2010). http://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T#tmdl_by_pollutant/.
  25. Wetzel, R. G. (2001). Limnology: Lake and River Ecosystems. 3rd ed. Academic Press.