Evaluation of groundwater level changes in Korea due to the earthquake in Japan (magnitude 9.0 in 2011)

일본 지진에 의한 국내 지하수 수위 영향 평가

  • Jeon, Woo-Hyun (Department of Geology, Kangwon National University) ;
  • Kwon, Koo-Sang (Department of Geology, Kangwon National University) ;
  • Lee, Jin-Yong (Department of Geology, Kangwon National University)
  • Published : 2011.12.30

Abstract

The large earthquake and a tidal wave driven by the earthquake occurred near the east coast of Honshu, Japan (magnitude 9.0) on Friday, March 11, 2011 at 14:46:23 (local time). The Korean Peninsular is located at 1,100~1,500 km distance from the epicenter. And, it might have an effect on aquifers in Korea. This study was performed to evaluate the earthquake influence on groundwater level in Korea. For this study, 24 monitoring wells out of Korean national groundwater monitoring wells (n=307) were selected, where the earthquake influence on groundwater levels was obviously observed. For characterizing the groundwater level change by the earthquake, time series analysis was performed for the data with 1 hour interval from on March 11 to 17, 2011. Groundwater levels increased or decreased by influence of the earthquake rapidly recovered in most monitoring wells. However, in some monitoring wells, influence on groundwater levels by the earthquake were removed gradually. Groundwater level increased in region where hydraulic conductivity and transmissivity were low and that decreased in region where those were high. It means that response of groundwater levels for earthquake was determined by hydrogeological properties such as hydraulic conductivity and transmissivity.

2011년 3월 11일 14:46:23.00(한국시간)에 일본 혼슈 동쪽 근해에서 리히터 규모 9.0의 지진과 함께 지진해일이 발생하였다. 우리나라는 일본지진 진앙으로부터 1,100~1,500 km 지점에 위치한다. 본 연구는 일본에서 발생한 강진이 우리나라 대수층의 지하수위에 미치는 영향을 평가하기 위해 수행되었다. 지하수위 자료는 국가 지하수 관측망 307개의 관측정으로부터 지진 영향이 뚜렷하게 나타난 24곳을 자료로 이용하였다. 2011년 3월 11일부터 3월 17일까지 매 시간 측정된 지하수위 자료를 이용하여 시계열 분석을 수행하였다. 지진의 영향으로 지하수위는 순간적인 상승 및 하강 이후 수위회복을 보였다. 이와 달리 지하수위가 변동된 이후 지속적으로 상승 및 하강하는 경우도 발생하였다. 지진 발생 이후 지하수위의 변동폭은 시간이 경과함에 따라 각 관측 지점의 수리지질학적인 영향에 의해 점차 증가하는 비례관계를 갖는다. 또한, 수리전도도와 투수량계수가 낮으면 지하수위는 상승하고 높으면 하강하는 특징을 보였다. 이는 지진에 의한 지하수위의 반응이 수리전도도 및 투수량계수와 같은 대수층의 수리지질학적인 특성으로 인해 결정되는 것을 의미한다.

Keywords

References

  1. 국가지하수정보센터, 2011, http://www.gims.go.kr
  2. 기상청, 2011, http://www.kma.go.kr
  3. 박영윤, 최현미, 이진용, 2010, 태풍에 의한 지하수 수위 및 전기전도도의 변동특성. 지질학회지, 46, 633-645.
  4. 옥순일, 함세영, 김봉상, 정재열, 우남칠, 이수형, 고기원, 박윤석, 2010, 제주도 서반부의 대수층 체계와 지진에 의한 지하수위 변동 특성. 자원환경지질, 43, 359-369.
  5. 이명재, 이진용, 김규범, 원종호, 2005, 국가지하수 관측소 측정자료의 이상값 분석. 지하수토양환경, 10, 65-74
  6. 이수형, 함세영, 하규철, 김용철, 정범근, 고경석, 고기원, 김기표, 2011, 지진에 의한 제주도 지하수위 변동 분석 (2010년 인도네시아 규모 7.7 지진). 지하수토양환경, 16, 41-51.
  7. 조영순, 2002, 지진 조기경보시스템. 한국도시방재학회지, 2, 12-16.
  8. Brodsky, E.E., Roeloffs, E., Woodcock, D., Gall, I. and Manga, M., 2003, A mechanism for sustained groundwater pressure changes induced by distant earthquakes. Journal of Geophysical Research, 108, 2390-2399.
  9. Chia, Y., Chiu, J.J., Chiang, Y.H., Lee, T.P., Wu, Y.M. and Horng, M.J., 2008, Implications of coseismic groundwater level changes observed at multiple-well monitoring stations. Geophysical Journal International, 172, 293-301. https://doi.org/10.1111/j.1365-246X.2007.03628.x
  10. Chia, Y., Wang, Y.S., Chiu J.J. and Liu, C.W., 2001, Changes of ground water level due to the 1999 Chi-Chi earthquake in the Choshui River alluvial fan in Taiwan. Bulletin of the Seismological Society of America, 91, 1062-1068.
  11. Chia, Y.P., Wang, Y.S., Huang, C.C., Chen, J.S. and Wu, H.P., 2002, Coseismic changes of groundwater level in response to the 1999 Chi-Chi earthquake. Western Pacific Earth Sciences, 2, 261-272.
  12. Gau, H.S., Chen, T.C., Chen, J.S. and Liu, C.W., 2007, Time series decomposition of groundwater level changes in wells due to the Chi-Chi earthquake in Taiwan: a possible hydrological precursor to earthquakes. Hydrological Processes, 21, 510-524. https://doi.org/10.1002/hyp.6257
  13. Grecksch, G., Roth, F. and Kümpel, H.-J., 1999, Coseismic well-level changes due to the 1992 Roermond earthquake compared to static deformation of half-space solutions. Geophysical Journal International, 138, 470-478. https://doi.org/10.1046/j.1365-246X.1999.00894.x
  14. Hamm, S.Y., Cheong, J.Y., Jang, S., Jung, C.Y. and Kim, B.S., 2005, Relationship between transmissivity and specific capacity in the volcanic aquifers of Jeju Island, Korea. Journal of Hydrology, 310, 111-121. https://doi.org/10.1016/j.jhydrol.2004.12.006
  15. King, C.-Y., Azuma, S., Igarashi, G., Ohno, M., Saito, H. and Wakita, H., 1999, Earthquake-related water-level changes at 16 closely clustered wells in Tono, central Japan. Journal of Geophysical Research, 104, 13073- 13082. https://doi.org/10.1029/1999JB900080
  16. King, C.-Y., Azuma, S., Ohno, M., Asai, Y., He, P., Kitagawa, Y., Igarashi, G. and Wakita, H., 2000, In search of earthquake precursors in the water-level data of 16 closely clustered wells at Tono, Japan. Geophysical Journal International, 143, 469-477. https://doi.org/10.1046/j.1365-246X.2000.01272.x
  17. Ohno, M., Sato, T., Notsu, K., Wakita, H. and Ozawa, K., 2006, Groundwater-level changes due to pressure gradient induced by nearby earthquakes off Izu Peninsula, 1997. Pure and Applied Geophysics, 163, 647-655. https://doi.org/10.1007/s00024-006-0041-2
  18. Quilty, E. and Roeloffs, E., 1997, Water-level changes in response to the 20 December 1994 earthquake near Parkfield, California. Bulletin of the Seismological Society of America, 87, 310-317.
  19. Ramana, D.V., Chadha, R.K., Singh, C. and Shekar, M., 2007, Water level fluctuations due to earthquakes in Koyna-Warna region, India. Nat Hazards, 40, 585-592. https://doi.org/10.1007/s11069-006-9022-0
  20. Rasmussen, T.C. and Crawford, L.A., 1997, Identifying and removing barometric pressure effects in confined and unconfined aquifers. Ground Water, 35, 502-511. https://doi.org/10.1111/j.1745-6584.1997.tb00111.x
  21. Roeloffs, E., 1998, Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. Journal of Geophysical Research, 103, 869-889. https://doi.org/10.1029/97JB02335
  22. Rojstaczer, S., Wolf, S. and Michel, R., 1995, Permeability enhancement in the shallow crust as a cause of earthquake- induced hydrological changes. Nature, 373, 237-239. https://doi.org/10.1038/373237a0
  23. USGS, 2011, http://www.usgs.gov/
  24. Wang, C.-Y., Wang, C.-H. and Kuo, C.-H., 2004, Temporal change in groundwater level following the 1999 (Mw = 7.5) Chi-Chi earthquake, Taiwan. Geofluids, 4, 210- 220. https://doi.org/10.1111/j.1468-8123.2004.00082.x