Understanding of active faults: A review for recent researches

활성단층의 이해: 최근의 연구에 대한 고찰

  • Kim, Young-Seog (Department of Earth and Environmental Sciences, Environmental and Marine Sciences and Technology, Pukyong National University) ;
  • Jin, Kwangmin (Department of Earth and Environmental Sciences, Environmental and Marine Sciences and Technology, Pukyong National University) ;
  • Choi, Weon-Hack (Central Research Institute, Korea Hydro and Nuclear Power Co.) ;
  • Kee, Weon-Seo (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 김영석 (부경대학교 지구환경과학과) ;
  • 진광민 (부경대학교 지구환경과학과) ;
  • 최원학 (한국수력원자력(주) 중앙연구원) ;
  • 기원서 (한국지질자원연구원 국토지질연구본부)
  • Published : 2011.12.30

Abstract

Recently, several large earthquakes have resulted in significant human casualties and extensive damage to properties globally. Almost all large earthquakes occur by reactivation of preexisting active faults. As a result, there has been an increase in the amount of papeoseismological and historical earthquake studies. The Korean Peninsula has generally been considered to be a tectonically stable region compared with neighbouring countries such as Japan and Taiwan, because it is located on margin of the Eurasian intracontinental region. Some relatively big earthquakes (M>6.0) involving surface ruptures have, however, been reported in historic documents and recently several active faults that have offset Quaternary sediments have also been reported. This study explains the importance of active faults, the relationship between earthquakes and active faults, recent research methods on active faults and briefly introduces some Korean active faults. This paper will contribute to a better understanding of active faults and it will help to develop studies on earthquake hazards and disaster prevention.

최근 들어 전 세계적으로 대규모 지진이 자주 발생하여 많은 인명과 재산 피해가 발생했다. 대부분의 대규모 지진은 활성단층의 재활성에 의해 발생한다. 따라서 대규모 지진의 재발특성을 이해하기 위하여 고지진 및 역사지진에 대한 많은 연구가 활발히 수행되고 있다. 우리나라는 유라시아판 연변부에 위치하여 일본이나 대만과 같은 나라들에 비해 지진의 발생빈도가 상대적으로 적고 주기도 길지만 우리나라에서도 큰 재해와 지표파열 등을 수반하는 규모 6.0 이상의 대규모 지진들이 역사시대와 제4기 동안에 발생한 것으로 보고되고 있다. 이러한 결과들과 부합하여 최근 한반도에서는 약 50여개의 활성단층들이 발견되었다. 이 논문에서는 활성단층의 중요성, 지진과 활성단층의 상관관계, 전 세계적으로 이루어지는 최근의 활성단층에 대한 여러 연구방법들을 설명하고, 우리나라에서 보고된 활성단층들을 간략히 소개하고자 한다. 이 논문을 통하여 활성단층과 이들의 연구 방법에 대한 최근의 이해를 소개하여 지진재해의 연구와 방재시스템 등에 유용하게 활용할 수 있도록 하는데 이 논문의 목적이 있다.

Keywords

References

  1. 경재복, 1997, 트렌치 조사에 의한 울산 단층 중북부의 고지 진학적 연구. 대한지질공학회지, 7, 81-90.
  2. 경재복, 이기화, Okada, A., 1999a, 양산단층대의 고지진학적 연구 -변위지형 분석 및 트렌치 조사. 지구물리와 물리탐사, 2, 155-168.
  3. 경재복,이기화, Okada, A., Watanabe, M., Suzuki, Y. and Takemura, K., 1999b, 양산단층대 남부 상천리 일대의 트렌치 조사에 의한 단층특성 규명. 한국지구과학회지, 20, 101-110.
  4. 경재복, 장태우, 2001, 양산단층대 북부 유계리일대의 신기단층운동. 지질학회지, 37, 563-577.
  5. 기원서, 김복철, 황재하, 송교영, 김유홍, 2007a, 읍천단층의 제4기 역단층운동 특성. 지질학회지, 43, 311-333.
  6. 기원서, 김유홍, 이홍진, 조등룡, 김복철, 송교영, 고희재, 이사로, 연연광, 황세호, 박권규, 성낙훈, 2007b, 한반도 남동부 제4기 단층변수 조사 및 DB 구축 (1차년도 중간보고서). 한국지질자원연구원 IP2006-047-2007(1), 111 p.
  7. 기원서, 김유홍, 이홍진, 조등룡, 김복철, 송교영, 고희재, 이사로, 연연광, 황세호, 박권규, 성낙훈, 2009, 한반도 남동부 제4기 단층변수 조사 및 DB 구축. 한국지질자원연구원 Ip2006-047-2008(1), 327 p.
  8. 김영석, 김현철, 강태섭, 김중휘, 최세운, 박승익, 임병렬, 박천득, 진광민, 2004, 읍천단층 정밀지질조사 최종보고서. KOPEC, 2004 p.
  9. 류충렬, 양경희, 김인수, 1996a, 울산단층 주변의 제4기단층: 활성단층인가?. 제51차 대한지질학회 정기총회 및 학술발표회 (초록) 부산 부경대학교, 10월 25일, 79-80.
  10. 류충렬, 양경희, 김인수, 이상원, 1996b, 울산단층 주변의 제4기 단층. 부산대학교 사범대학, 33, 311-327.
  11. 류충렬, 이봉주, 손문, 이융희, 최성자, 최위찬, 손문, 2002, 경주시 외동읍 개곡리의 제4기 단층. 지질학회지 38, 309-323.
  12. 류충렬, 이봉주, 조등룡, 최위찬, 최성자, 김종열, 1999a, 경주시 강동며 단구리의 제4기 단층: 벽계단층. 대한자원환경지질학회/한국자원공학회/한국지구물리탐사학회 춘계공동학술발표회 -동북아광상성인(초록), 334 p.
  13. 류충렬, 조등룡, 최위찬, 이봉주, 최성자, 이영준, 1999b, 양산단층대 북부 청하 일원의 파쇄대 발달 특성. 대한지질공학회 1999년도 학술발표회 논문집, 83-91.
  14. 이기화, 이전희, 경재복, 1998, 양산단층계 지진활동의 통계적 분석. 대한지질공학회지, 8, 99-114.
  15. 이봉주, 류충렬, 최위찬, 1999, 경주시 양남면 일대의 제4기 단층. 대한지질학회지, 35, 1-14.
  16. 이희권, 2002, 단층암에 대한 ESR 연대측정 연구. 강원대학교, 한국원자력안전기술원 KINS/HR-474, 42 p.
  17. 이희권, 양주석, 2007, 한반도 남동부의 제4기 단층운동의 시․공간적 활동 형태. 한국지질자원연구원 제5회 한국의 지질 심포지엄 논문집 제3호 (한반도 남동부의 제4기 지구조운동), 45-55.
  18. 임창복, 노명현, 심택모, 이현우, 최호선, 김효정, 2004, 원자력발전소 부지에 적용하는 활동성 단층의 기준 및 그 배경. 지질학회지, 40, 279-284.
  19. 장천중, 장태우, 1998, 고응력 분석을 통한 양산단층의 구조 운동사. 대한지질공학회지, 8, 32-49.
  20. 장태우, 2001, 울산단층 동쪽지괴의 제4기 조구조 운동. 지질학회지, 37, 431-444.
  21. 전명순, 정승환, 지헌철, 전정수, 신인철, 1993, 지진연구, 한국자원연구소 연구보고서 KR-92-1G-3, 1-53.
  22. 정창식, 이석훈, 최만식, 이광식, 김정민, 한정희, 신형선, 장병욱, 이희권, 장호완, 권성택, 임소현, 안선영, 2000, 신기 단층에 대한 절대연대 측정법 정립. 한국원자력안전 기술원, 131 p.
  23. 최범영, 이병주, 임순복, 이승렬, 진명식, 이동진, 조진동, 이윤수, 김정찬, 홍세선, 최현일, 류충렬, 조등룡, 박기화, 고희재, 고인세, 안기오, 성낙훈, 이현철, 박준구, 2003, 한반도 지구조 진화 연구: 후기중생대-신생대 지구조 진화사. 한국지질자원연구원, 677 p.
  24. 최위찬, 이동영, 이봉주, 류충렬, 최범영, 최성자, 조등룡, 김주용, 이창범, 기원서, 양동윤, 김인준, 김유숙, 유장한, 채병곤, 김원영, 강필종, 유일현, 이희권, 1998, 활성단층 조사평가 연구-한반도 동남부 지역. 한국자원연구소 연구보고서 KR-98(C)-22, 301 p.
  25. 최위찬, 최성자, 조등룡, 이영준, 류충렬, 고인세, 신현모, 송미주, 이진한, 권성택, 이희권, 최광선, 2000, 신기지각변형연구. 과학기술부, 한국자원연구소, 278 p.
  26. 최정헌, 정창식, 2007, 한반도 동남해안 해안단구퇴적층에 대한 OSL 연대측정. 한국지질자원연구원 제5회 한국의 지질 심포지엄 논문집 제3호 (한반도 남동부의 제4기 지구조운동), 33-43.
  27. 채병곤, 장태우, 1994, 청하-영덕 지역 양산단층의 운동사 및 관련 단열 발달상태. 지질학회지, 30, 379-394.
  28. 한국수력원자력(주), 2002, 신고리 1, 2호기 예비안전성 분석보고서.
  29. 한국수력원자력(주), 2003, 신월성 1, 2호기 예비안전성 분석보고서.
  30. 한국원자력안전기술원, 2009, 원전부지 지질/지진안전성 평가 최적화 기반기술개발 1단계평가용 실적보고서.
  31. 한국자원연구소, 1998, 양산단층을 고려한 설계기준지진의 재평가 최종 보고서(제1권), 671 p.
  32. 한국전력공사 전력연구원, 2003, 광여기루미네선스 및 테프라 연대측정 절차서, 60 p.
  33. Abrahamson, N.A. and Somerville, P.G., 1996, Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake. Bulletin of the Seismological Society of America, 86, S93-S99.
  34. Berg, S.S. and Skar, T., 2005, Controls on damage zone asymmetry of a normal fault zone: outcrop analyses of a segment of the Moab fault, SE Utah. Journal of Structural Geology, 27, 1803-1822. https://doi.org/10.1016/j.jsg.2005.04.012
  35. Bonilla, M.G., Mark, R.F. and Lienkaemper, J.J., 1984, Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement. Bulletin of Seismological Society of America, 74, 2379-2411.
  36. Burbank, D.W. and Anderson, R.S., 2001, Tectonic Geomorphology, Blackwell Science, Massachusetts, 274 p.
  37. Choi, J.H., Murray, A.S., Jain, M., Cheong, C.-S. and Chang, H.W., 2003, Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea. Quaternary Science Reviews, 22, 407-421. https://doi.org/10.1016/S0277-3791(02)00136-1
  38. Choi, J.H., Kim, J.W., Murray, A.S., Hong, D.G., Chang, H.W. and Cheong, C.-S., 2009, OSL dating of marine terrace sediments on the southeastern coast of Korea with implications for Quaternary tectonics. Quaternary International, 199, 3-14. https://doi.org/10.1016/j.quaint.2008.07.009
  39. Chui, G., 2009, Shaking up earthquake theory. Nature, 461, 870-872. https://doi.org/10.1038/461870a
  40. Dieterich, J., 1994, A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research, 99, 2601-2618. https://doi.org/10.1029/93JB02581
  41. Fukuchi, T., 1992, ESR studies for absolute dating of fault movements. Journal of Geological Society, 149, 265-272. https://doi.org/10.1144/gsjgs.149.2.0265
  42. Gutenberg, B. and Richter, C., 1944, Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34, 185-188.
  43. Guerrieri, L. and Vittori, E. (Eds.), 2007, Intensity Scale ESI 2007. INQUA, 41 p.
  44. Harris, S.D., Vaszi, A.Z. and Knipe, R.J., 2007, Threedimensional upscaling of fault damage zones for reservoir simulation. Geological Society of London, Special Publications; vol. 292, 353-374.
  45. Hyndman, D. and Hyndman, D., 2006, Natural Hazard and Disaster. Thomson Learning, 533 p.
  46. Jin, K. and Kim, Y.-S., 2010, Review and new interpretation for the propagation characteristics assoicated with the 1999 Chi-Chi eaerthquake faulting event. Island Arc, 19, 659-675.
  47. Jin, K., Lee., M., Kim, Y.-S. and Choi, J.-H., 2011, Archaeoseismological studies on historical heritage sites in the Gyeongju area, SE Korea. Quaternary International, 1-13.
  48. Kagan, Y.Y. and Jackson, D.D., 1991a, Long-term earthquake clustering. Geophysical Journal of International, 104, 117-133. https://doi.org/10.1111/j.1365-246X.1991.tb02498.x
  49. Kagan, Y.Y. and Jackson, D.D., 1991b, Seismic Gap Hypothesis: Ten Years After. Journal of Geophysical Research, Vol. 96, 21,419-21,431.
  50. Keller, E.A. and Blodgett, R.H., 2006, Natural Hazards: Earth's Processes as Hazards, Disasters, and Catastrophes. Prentice Hall. New Jersey, 391 p.
  51. Keller, E.A. and Pinter, N., 2002, Active Tectonics: Earthquakes, Uplift, and Landscape. 2nd ed. Prentice Hall. New Jersey, 362 p.
  52. Kim, Y.-S., Andrews, J.R. and Sanderson, D.J., 2001, Reactivated strike-slip faults: examples from north Cornwall, UK. Tectonophysics, 340, 173-194.
  53. Kim, Y.-S., Kihm, J.-W. and Jin, K., 2011, Interpretation of the rupture history of a low slip-rate active fault by analysis of progressive displacement accumulatioin: an example from the Quaternary Eupcheon Fault, Korea. Journal of Geological Society, London, 168, 273-288. https://doi.org/10.1144/0016-76492010-088
  54. Kim, Y.-S., Park, J.Y., Kim, J.H., Shin, H.J. and Sanderson, D.J., 2004a, Thrust Geometries in unconsolidated Quaternary sediments and evolution of the Eupcheon Fault, southeast Korea. The Island Arc, 13, 403-415. https://doi.org/10.1111/j.1440-1738.2004.00435.x
  55. Kim, Y.-S., Peacock, D.C.P. and Sanderson, D.J., 2003, Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural Geology, 25, 793-812. https://doi.org/10.1016/S0191-8141(02)00200-6
  56. Kim, Y.-S., Peacock, D.C.P. and Sanderson, D.J., 2004b, The fault damage zones. Journal of Structural Geology, 26, 503-517. https://doi.org/10.1016/j.jsg.2003.08.002
  57. Kim, Y.-S. and Sanderson, D.J., 2005, The relationship between displacement and length of faults: a review. Earth-Science Reviews, 68, 317-334. https://doi.org/10.1016/j.earscirev.2004.06.003
  58. Kim, Y.-S. and Sanderson, D.J., 2008, Earthquake and fault propagation, displacement and damage zones. Structural Geology: New Research, 99-117.
  59. Kim, Y.-S. and Sanderson, D.J., 2010, Inferred fluid flow through fault damage zones based on the observatioin of stalactites in carbonate caves. Journal of Structural Geology 32, 1305-1316. https://doi.org/10.1016/j.jsg.2009.04.017
  60. Kyung, J.B., 1997, Paleoseismological study on the Midnorthern part of the Ulsan Fault by trench method. Jour. Eng. Geology, 7, 1, 81-90.
  61. Kyung, J.B., 2003, Paleoseismology of the Yangsan fault, southeastern part of the Korean peninsula. Annals of Geophysics, 46, 983-996.
  62. Kyung, J.B. and Lee, K., 2006, Active fault study of the Yangsan Fault System and Ulsan Fault System, southeastern part of the Korean Peninsula. Journal of Korean Geophysical Society, 9, 219-230.
  63. Leckenby, R.J., Sanderson, D.J. and Lonergan, L., 2005, Estimating flow heterogeneity in natural fracture systems. Journal of Volcanology and Geothermal Research, 148, 116-129. https://doi.org/10.1016/j.jvolgeores.2005.03.017
  64. Lee, D.-Y., 1985, Quaternary deposits in the coastal fringe of the Korean Peninsula. Ph.D. Thesis, Vrije Univ. of Brussels.
  65. Lee, D.-Y., 1987a, Stratigraphic Research of the Quaternary Deposits in the Korean Peninsula: Progress in Quaternary Geology of East and Southeast Asia. CCOP/TP 18, 227-242.
  66. Lee, D.-Y., 1987b, Preliminary Study of Quaternary Deposits in Korea and First Approximation of Their Lithostratigraphical Position. GEOBOUND, 27-40.
  67. Lee, D.-Y. and Kim, J.-Y., 1990, Geological Excursion for Quaternary Terrace Deposits and Their Stratigaphy along the East Coast of the Korean Peninsula. International Symposium on the Quaternary Natures, Seoul, Korea.
  68. Lee, K. and Na, S.H., 1983, A study of microearthquake activity of the Yangsan fault. Journal of the Geological Society of Korea, 19, 127-135 (in Korean with English abstract).
  69. Lee, H.-K. and Yang, J.-S., 2003, ESR dating of the Wangsan fault, South Korea. Quaternary Science Reviews, 22, 1339-1343. https://doi.org/10.1016/S0277-3791(03)00018-0
  70. Lee, H.-K. and Yang, J.-S., 2007, ESR dating of the Eupcheon fault, South Korea. Quaternary Geochronology, 2, 392-397. https://doi.org/10.1016/j.quageo.2006.04.009
  71. Li, J.W., Zhou, M.F., Li, X.F., Fu, Z.R. and Li, Z.J., 2001, The Hunan-Jiangxi strike-slip fault system in South China: southern extension of the Tan-Lu fault. Journal of Geodynamics, 32, 333-354. https://doi.org/10.1016/S0264-3707(01)00033-3
  72. Machida, H., 1999, The stratigraphy, chronology and distribution of distal marker-tephras in and around Japan. Global and Planetary Change, 21, 71-94. https://doi.org/10.1016/S0921-8181(99)00008-9
  73. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K. and Rabaute, T., 1993, The displacement field of the Landers earthquake mapped by radar interferometry. Nature, V. 364, p. 138-142. https://doi.org/10.1038/364138a0
  74. McCalpin, J.P., 1996, Paleoseismology. Academic Press, San Diego, 588 p.
  75. McCalpin, J.P., 2009, Paleoseismology: 2nd ed. Academic Press, San Diego, 613 p
  76. McCann, W.R., Nishenko, S.P., Sykes, L.R. and Krause, J., 1979, Seismic gaps and plate tectonics: Seismic potential for major boundaries. Pageoph, 117, 1082-1147. https://doi.org/10.1007/BF00876211
  77. McGeary, D., Plummer, C.C. and Carlson, D.H., 2001, Physical Geology: Earth Revealed. McGraw-Hill Higher Education, New York, 578 p.
  78. McGrath, A.G. and Davison, I., 1995, Damage zone geometry around fault tips. Journal of Structural Geology, 17, 1011-1024. https://doi.org/10.1016/0191-8141(94)00116-H
  79. Molar, P. and Tapponnier, P., 1975, Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189, 419-426. https://doi.org/10.1126/science.189.4201.419
  80. NARA, 1997, Code of Federal Regulation 10, Energy: part 100-Reactor Site Criteria, published by the Office of the Federal Register National Archives and Records Administration. U.S.A., 472-487.
  81. NSC, 1981, Regulatory Guide for Aseismic Design of Nuclear Power Facilities (revised edition). Nuclear Safety Commision, Japan, 26 p.
  82. Okada, A., Watanabe, M., Sato, H., Jun, M.S., Jo, W.R., Kim, S.K., Jeon, J.S., Chi, H.C. and Oike, K., 1994, Active fault topography and trench survey in the central part of the Yangsan fault, southeast Korea. Journal of Geography, 103, 111-126 (in Japanese). https://doi.org/10.5026/jgeography.103.2_111
  83. Okada, A., Watanabe, M., Suzuki, Y., Kyung, J. B., Jo, W. R., Kim, S. K. and Oike, K., 1995, Active fault topography and fault outcrops in the central part of the Ulsan fault system, southeast Korea. Proceeding of 1995 Japan Earth and Planetary Science Joint Meeting (abstract).
  84. Okada, A., Watanabe, M., Suzuki, Y., Kyung, J. B., Jo, W. R., Kim, S. K., Oike, K. and Makamura, T. 1998, Active fault topography and fault outcrops in the central part of the Ulsan fault system, southeast Korea. Joural of Geography, 107, 644-658 (in Japanese). https://doi.org/10.5026/jgeography.107.5_644
  85. Reid, H. F., 1910, The Mechanics of the Earthquake, The California Earthquake of April 18, 1906. Report of the State Investigation Commision, Vol. 2, Carnegie Institution of Washington, Washington, D.C.
  86. Scholz, C., 2002, The Mechanics of Earthquakes and Faulting: 2nd ed. Cambridge University Press, Cambridge, 470 p.
  87. Schwartz, D.P. and Coppersmith, K.J., 1984, Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones. Journal fo Geophysical Research, 89, 5681-5698. https://doi.org/10.1029/JB089iB07p05681
  88. Sibson, R.H., 1985, A note on fault reactivation. Journal of Structural Geology, 7, 751-754 . https://doi.org/10.1016/0191-8141(85)90150-6
  89. Sibson, R.H., 1989, Earthquake faulting as a structural process. Journal of Structural Geology, 11, 1-14. https://doi.org/10.1016/0191-8141(89)90032-1
  90. Sieh, K. E., 1981, A review of geological evidence for recurrence times for large earthquakes. In Earthquake Prediction, An International Review (D.W. Simpson and P.G. Richards, eds.), Maurice Ewing Ser., Vol. 4, pp. 181-207. Am. Geophys. Union, Washington, DC.
  91. Silva, P.G., Rodriguez Pascua, M.A. et al., 2008, Catalogacion de los efectos geologicos y ambientales de los terremotos en Espana en la escala ESI-2007 y su aplication a los estudios paleosismologicos. Geotemas, 6, 1063-1066.
  92. Stein, R.S., Barka, A.A. and Dieterich, J.H., 1997, Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal of International, 128, 594-604. https://doi.org/10.1111/j.1365-246X.1997.tb05321.x
  93. Stuvier, M. and Reimer, P.J., 1993, Extended $^{14}C$ database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215-230.
  94. Sugawara, D., Goto, K., Chague-Goff, C., Fujino, S., Goff, J., Jaffe, B., Nichimura, Y., Richmond, B., Szczucinski, W., Tappin, D. R., Witter, R. and Ylianto, E., 2011, Initial field survey report of the 2011 East Japan Tsunami in Sendai, Natori and Iwanuma Cities. UNESCO-Ioc Internatioin Tsunami Survey Team, 16 p.
  95. The Research Group for Active Faults of Japan, 1992, Maps of Active Faults in Japan with an Explanatory Text. University of Tokyo Press, Tokyo, 73 p.
  96. U.S. Geological Survey, 1974, Earthquake Information. Bulletin, 6(5).
  97. Walsh, J.J., Bailey, W.R., Childs, C., Nicol, A. and Bonson, C.G., 2003, Formation of segmented normal faults: a 3-D perspective. Journal of Structural Geology, 25, 1251-1262 https://doi.org/10.1016/S0191-8141(02)00161-X
  98. Walsh, J.J., Nicole, A. and Childs, C., 2002, An alternative model for the growth of faults. Journal of Structural Geology, 24, 1669-1675. https://doi.org/10.1016/S0191-8141(01)00165-1
  99. Walsh, J.J. and Watterson, J., 1987, Distributions of cumulative displacement and seismic slip on a single normal fault. Journal of Structural Geology, 9, 239-247.
  100. Wells, D.L. and Coppersmith, K.J., 1994, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of Seismological Society of America, 84, 974-1002.
  101. Wesnousky, S. G. 2008. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America 98, 1609-1632. https://doi.org/10.1785/0120070111
  102. Wiemer, S. and Wyss, M., 1997, Mapping the frequencymagnitude distribution in asperities: An improved technique to calculate recurrence times? Journal of Geophysical Research, 102, 115-128.
  103. Wintle, A.G., 1973, Anomalous fading of thermoluminescence in mineral samples. Nature, 245, 143-144. https://doi.org/10.1038/245143a0
  104. Yeats, R.S., 1987, Coseismic folding. In:Crone, A.J. and Omdahl, E.M. (eds.), Directions in Paleoseismology. U.S. Geological Survey Open-File Report 87-673, 163- 172.
  105. Yu, Y.-X. and Gao, M.-T., 2001, Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi) earthquake, Taiwan Province. Acta Seismologica Sinica, 14, 654-659. https://doi.org/10.1007/BF02718076
  106. Zhang, P., Mao, F. and Slemmons, D.B., 1999, Rupture terminations and size of segment boundaries from historical earthquake ruptures in the Basin and Range Province. Tectonophysics, 308, 37-52. https://doi.org/10.1016/S0040-1951(99)00089-X