DOI QR코드

DOI QR Code

Picture Quality According to the Type of Detector in Full-field Digital Mammography

  • Kim, Hyun-Soo (Department of Radiological Technology, Shingu College) ;
  • Jeong, Jae-Ho (Department of Radiologic Science, Kyung Hee Medical Center, Department of Electronics, Kwangwoon University) ;
  • Lee, Jong-Woong (Department of Radiology, Kyung Hee University Hospital) ;
  • Kang, Hee-Doo (Department of Radiologic Science, Kyung Hee Medical Center) ;
  • Dong, Kyung-Rae (Department of Radiological Technology, Gwangju Health College University, Department of Nuclear Engineering, Chosun University) ;
  • Chung, Woon-Kwan (Department of Nuclear Engineering, Chosun University) ;
  • Kim, Eun-Soo (3D Display Research Center, Department of Electronic Engineering, Kwangwoon University)
  • Published : 2011.02.15

Abstract

We have attempted to understand the characteristics of images through the dependence of distortion and noise production on the compression and to quantitatively estimate of picture quality according to the type of detector used to obtain digital mammography images. We determined the differences in the original images with Signal to Noise Ratio, Peak Signal to Noise Ratio, Root Mean Square Error, and Mean Absolute Error by applying the compression rates of JPEG2000 and JPEG and selecting eight sample images after we checked the Module Transfer Function with the edge method based on IEC 62220-1-2 from the direct Hologic detector and the indirect GE detector. The picture quality of the direct detector was superior to that of the indirect detector with MTF. However, the distortion of the direct detector was more severe than that of the indirect detector in image compression.

Keywords

References

  1. J. Ahmedin, S. Rebecca, W. Elizabeth, H. Yongping, X. Jiaquan and J. Michael, CA-Cancer J. Clin. 59, 225 (2009). https://doi.org/10.3322/caac.20006
  2. A. Fischmann, K. C. Siegmann, A. Wersebe, C. D. Claussen and M. M¨uller-Schimpfle, Br. J. Radiol. 78, 312 (2005). https://doi.org/10.1259/bjr/33317317
  3. N. Karssemeijer, J. T. Frieling and J. H. Hendriks, Invest. Radiol. 5, 413 (1993).
  4. J. A. Harvey and V. E. Bovbjerg, Radiology 230, 25 (2004). https://doi.org/10.1148/radiol.2293031482
  5. J. G. Elmore, C. K. Wells, C. H. Lee, D. H. Howard, A. R. Feinstein and N. Engl, J. Med. 331, 1493 (1994).
  6. M. S. West and D. C. Spelic, Med. Phys. 27, 60 (2000).
  7. American College of Radiology, Mammography Quality Control Manual (ACR, Philadelphia, USA, 1999).
  8. D. M. Farria, L. W. Bassett, C. Kimme-Smith and N. DeBruhl, Radiographics 14, 371 (1994).
  9. E. Samei and M. J. Flynn, Med. Phys. 30, 608 (2003). https://doi.org/10.1118/1.1561285
  10. H. Illers, E. Buhr, S. Gunther-Kohfahl and U. Neitzel, Radiat. Prot. Dosim. 114, 214 (2005). https://doi.org/10.1093/rpd/nch506
  11. F. Diekmann, S. Diekmann, U. Bick, P. Rogalla, J. U. Blohmer, K. J. Winzer and B. Hamm, Rofo. 174, 297 (2002). https://doi.org/10.1055/s-2002-20603
  12. K. P. Hermann, S. Obenauer, M. Funke and E. H. Grabbe, Eur. J. Radiol. 12, 2188 (2002).
  13. F. Liu, K. M. Kanal, B. K. Stewart and C. D. Lehman, Acad. Radiol. 17, 791 (2010). https://doi.org/10.1016/j.acra.2010.02.007
  14. International Electrotechnical Commission, International Standard IEC 62220-1-2, medical electrical equipment-characteristics of digital imaging devices-Part 1: determination of the detective quantum efficiency, Geneva (2003).
  15. N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans and A. C. Bovik, IEEE Trans. Image Process. 9, 636 (2000). https://doi.org/10.1109/83.841940

Cited by

  1. A study on evaluating the image quality in DR a system with and without a grid vol.60, pp.11, 2011, https://doi.org/10.3938/jkps.60.1977
  2. Exposure Index변화에 따른 Image Quality와 Effective dose에 대한 연구: a Monte Carlo Simulation Study vol.7, pp.1, 2011, https://doi.org/10.7742/jksr.2013.7.1.063
  3. Quantitative Visually Lossless Compression Ratio Determination of JPEG2000 in Digitized Mammograms vol.26, pp.3, 2011, https://doi.org/10.1007/s10278-012-9538-7
  4. 다시점 영상 생성을 위한 DIBR 기반의 깊이 정확도 향상 방법 vol.5, pp.9, 2016, https://doi.org/10.3745/ktccs.2016.5.9.237