DOI QR코드

DOI QR Code

Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory

Hsu, Jung-Chang;Lee, Haw-Long;Chang, Win-Jin

  • Published : 20111100

Abstract

The aim of this paper is to study the longitudinal frequency of a cracked nanobeam. The frequency equation of the nanobeam with clamped-clamped and clamped-free boundary conditions is derived based on the nonlocal elasticity theory. According to the equation, it can be found that the effects of the crack parameter, crack location, and nonlocal parameter on the longitudinal frequency of the cracked nanobeam are significant. The frequency decreases with an increase of the crack parameter. However, the increasing nonlocal parameter results in a decrease of the crack effect on the frequency. In addition, when the crack location is near the support, a larger decrease in the frequency can be observed.

Keywords

References

  1. E.V. Dirote (Ed.), Trends in Nanotechnology Research, Nova Science Publishers, New York, 2004.
  2. W.J. Chang, T.H. Fang, J. Phys. Chem. Solids 64 (2003) 1279. https://doi.org/10.1016/S0022-3697(03)00130-6
  3. T.H. Fang, W.J. Chang, S.L. Lin, Appl. Surf. Sci. 253 (2006) 1649. https://doi.org/10.1016/j.apsusc.2006.02.062
  4. D.L. Chen, T.C. Chen, Y.S. Lai, Nanoscale Res. Lett. 5 (2010) 315. https://doi.org/10.1007/s11671-009-9482-8
  5. A.C. Eringen, J. Appl. Phys. 54 (1983) 4703. https://doi.org/10.1063/1.332803
  6. H.L. Lee, W.J. Chang, J. Appl. Phys. 103 (2008) 024302. https://doi.org/10.1063/1.2822099
  7. H.L. Lee, W.J. Chang, J. Phys. Condens. Matter 21 (2009) 115302. https://doi.org/10.1088/0953-8984/21/11/115302
  8. H.L. Lee, W.J. Chang, Physica E 41 (2009) 529. https://doi.org/10.1016/j.physe.2008.10.002
  9. W.J. Chang, J.C. Hsu, H.L. Lee, Nanoscale Res. Lett. 5 (2010) 1774. https://doi.org/10.1007/s11671-010-9709-8
  10. M. Kirkham, Z.L. Wang, R.L. Snyder, Nanotechnology 19 (2008) 445708. https://doi.org/10.1088/0957-4484/19/44/445708
  11. Y. Sun, J. Gao, R. Zhu, J. Xu, L. Chen, J. Zhang, Q. Zhao, D. Yu, J. Chem. Phys. 132 (2010) 124705. https://doi.org/10.1063/1.3370339
  12. N. Pugno, Curr. Top. Acoust. Res. 4 (2006) 11.
  13. N. Pugno, Key Eng. Mater. 347 (2007) 199. https://doi.org/10.4028/www.scientific.net/KEM.347.199
  14. J. Loya, J. Lppez-Puente, R. Zaera, J. Fernandez-Saez, J. Appl. Phys. 105 (2009) 044309. https://doi.org/10.1063/1.3068370
  15. A. Morassi, J. Sound Vib. 242 (2001) 577. https://doi.org/10.1006/jsvi.2000.3380
  16. M. Aydogdu, Physica E 41 (2009) 861. https://doi.org/10.1016/j.physe.2009.01.007
  17. K.V. Singh, Mech. Syst. Signal Proc. 23 (2009) 1870. https://doi.org/10.1016/j.ymssp.2008.05.009

Cited by

  1. Dynamical properties of nanotubes with nonlocal continuum theory: A review vol.55, pp.7, 2011, https://doi.org/10.1007/s11433-012-4781-y
  2. Static analysis of nanobeams including surface effects by nonlocal finite element vol.26, pp.11, 2011, https://doi.org/10.1007/s12206-012-0871-z
  3. Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems vol.111, pp.11, 2011, https://doi.org/10.1063/1.4720084
  4. Size-dependent free flexural vibration behavior of functionally graded nanoplates vol.65, pp.None, 2011, https://doi.org/10.1016/j.commatsci.2012.06.031
  5. Mass Detection Using a Graphene-Based Nanomechanical Resonator vol.52, pp.r2, 2011, https://doi.org/10.7567/jjap.52.025101
  6. Nonlocal effects on the longitudinal vibration of a complex multi-nanorod system subjected to the transverse magnetic field vol.50, pp.6, 2011, https://doi.org/10.1007/s11012-015-0111-6
  7. Torsional Vibration of Cracked Nanobeam Based on Nonlocal Stress Theory with Various Boundary Conditions: An Analytical Study vol.7, pp.3, 2011, https://doi.org/10.1142/s1758825115500362
  8. Studying the influence of surface effects on vibration behavior of size-dependent cracked FG Timoshenko nanobeam considering nonlocal elasticity and elastic foundation vol.122, pp.5, 2011, https://doi.org/10.1007/s00339-016-0036-5
  9. Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen’s nonlocal elasticity and DQM vol.122, pp.8, 2016, https://doi.org/10.1007/s00339-016-0245-y
  10. Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory vol.122, pp.4, 2011, https://doi.org/10.1007/s00339-016-9961-6
  11. Transverse Vibrations of Mixed-Mode Cracked Nanobeams With Surface Effect vol.138, pp.1, 2016, https://doi.org/10.1115/1.4031832
  12. Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity vol.123, pp.1, 2011, https://doi.org/10.1007/s00339-016-0658-7
  13. Free transverse vibration analysis of size dependent Timoshenko FG cracked nanobeams resting on elastic medium vol.23, pp.6, 2011, https://doi.org/10.1007/s00542-016-2983-3
  14. Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam vol.132, pp.4, 2017, https://doi.org/10.1140/epjp/i2017-11458-0
  15. Longitudinal vibration analysis of nanorods with multiple discontinuities based on nonlocal elasticity theory using wave approach vol.24, pp.5, 2011, https://doi.org/10.1007/s00542-017-3619-y
  16. On the torsional vibrations of restrained nanotubes embedded in an elastic medium vol.40, pp.9, 2018, https://doi.org/10.1007/s40430-018-1346-7
  17. Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution vol.25, pp.6, 2011, https://doi.org/10.1080/15376494.2017.1285455
  18. Vibration analysis of carbon nanotubes with multiple cracks in thermal environment vol.6, pp.1, 2011, https://doi.org/10.12989/anr.2018.6.1.057
  19. An efficient solution method for the longitudinal vibration of nanorods with arbitrary boundary conditions via a hardening nonlocal approach vol.24, pp.11, 2018, https://doi.org/10.1177/1077546316684042
  20. An analytical study on the size dependent longitudinal vibration analysis of thick nanorods vol.5, pp.7, 2011, https://doi.org/10.1088/2053-1591/aacf6e
  21. Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2011, https://doi.org/10.12989/anr.2018.6.3.219
  22. Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory vol.28, pp.6, 2018, https://doi.org/10.12989/scs.2018.28.6.749
  23. Dynamic Behavior of Magnetically Affected Rod-Like Nanostructures with Multiple Defects via Nonlocal-Integral/Differential-Based Models vol.10, pp.11, 2011, https://doi.org/10.3390/nano10112306
  24. Variational method for non-conservative instability of a cantilever SWCNT in the presence of variable mass or crack vol.91, pp.1, 2011, https://doi.org/10.1007/s00419-020-01770-8
  25. Nonlocal-integro-surface energy-vibro analysis of twist in coaxially composite wire-like nanostructures with internal and interfacial defects via a meshless technique vol.135, pp.None, 2011, https://doi.org/10.1016/j.enganabound.2021.11.003