DOI QR코드

DOI QR Code

Saccharification of alginate by using exolytic oligoalginate lyase from marine bacterium Sphingomonas sp. MJ-3

  • Ryu, Mili (Department of Chemical Engineering, Kyung Hee University) ;
  • Yeol, Eun (Department of Chemical Engineering, Kyung Hee University)
  • Published : 2011.09.25

Abstract

Alginate is a linear polysaccharide that is abundant in algal biomass. A novel recombinant exolytic oligoalginate lyase from a marine bacterium, Sphingomonas sp. MJ-3, was used for the saccharification of alginate into alginate monosaccharides in order to use alginate monosaccharides as renewable carbon source. The optimal heterologous expression condition for the MJ-3 oligoalginate lyase was determined, and the effects of saccharification reaction conditions were evaluated. Unsaturated monosaccharides up to 3.3 mg/ml were successfully prepared from 1% (w/v) alginate by using the recombinant oligoalginate lyase of Sphingomonas sp. MJ-3.

Keywords

References

  1. F. Clementi, Crit. Rev. Biotechnol. 17 (1997) 327. https://doi.org/10.3109/07388559709146618
  2. W. Hashimoto, O. Miyake, A. Ochia, K. Murata, J. Biosci. Bioeng. 99 (2005) 48. https://doi.org/10.1263/jbb.99.48
  3. T.Y. Wong, L.A. Preston, N.L. Schiller, Annu. Rev. Microbiol. 54 (2000) 289. https://doi.org/10.1146/annurev.micro.54.1.289
  4. P. Michaud, A. Da Costa, B. Courtois, J. Courtois, Crit. Rev. Biotechnol. 23 (2003) 233. https://doi.org/10.1080/07388550390447043
  5. Z. Zhang, G. Yu, H. Guan, X. Zhao, Y. Du, X. Jiang, Carbohydr. Res. 339 (2004) 1475. https://doi.org/10.1016/j.carres.2004.03.010
  6. J. Courtois, Curr. Opin. Microbiol. 12 (2009) 261. https://doi.org/10.1016/j.mib.2009.04.007
  7. K. Iwasaki, Y. Matsubara, Biosci. Biotechnol. Biochem. 64 (2000) 1067. https://doi.org/10.1271/bbb.64.1067
  8. M. Kurachi, T. Nakashima, C. Miyajima, Y. Iwamoto, T. Muramatsu, K. Yamaguchi, T. Oda, J. Infect. Chemother. 11 (2005) 199. https://doi.org/10.1007/s10156-005-0392-0
  9. N.Q. Hien, N. Nagasawa, L.X. Tham, F. Yoshii, V.H. Dang, H. Mitomo, K. Makuuchi, T. Kume, Radiat. Phys. Chem. 59 (2000) 97. https://doi.org/10.1016/S0969-806X(99)00522-8
  10. M. Iwamoto, M. Kurachi, T. Nakashima, D. Kim, K. Yamaguch, T. Oda, Y. Iwamoto, T. Muramatsu, FEBS Lett. 579 (2005) 4423. https://doi.org/10.1016/j.febslet.2005.07.007
  11. A. Kawada, N. Hiura, S. Tajima, H. Takahara, Arch. Dermatol. Res. 291 (1999) 542. https://doi.org/10.1007/s004030050451
  12. Y. Wang, F. Han, B. Hu, J. Li, W. Yu, Nutr. Res. 26 (2006) 597. https://doi.org/10.1016/j.nutres.2006.09.015
  13. M.A. Alkawash, J.S. Soothill, N.L. Schiller, APMIS 114 (2006) 131. https://doi.org/10.1111/j.1600-0463.2006.apm_356.x
  14. A. Boyd, A.M. Chakrabarty, Appl. Environ. Microbiol. 60 (1994) 2355.
  15. D.E. Kim, E.Y. Lee, H.S. Kim, Mar. Biotechnol. 11 (2009) 10. https://doi.org/10.1007/s10126-008-9114-9
  16. W. Hashimoto, O. Miyake, K. Momma, S. Kawai, K. Murata, J. Bacteriol. 182 (2000) 4572. https://doi.org/10.1128/JB.182.16.4572-4577.2000
  17. M. Iwamoto, R. Araki, K. Iriyama, T. Oda, H. Fukuda, S. Hayashida, T. Muramatsu, Biosci. Biotechnol. Biochem. 65 (2001) 133. https://doi.org/10.1271/bbb.65.133
  18. O. Miyake, W. Hashimoto, K. Murata, Protein Expr. Purif. 29 (2003) 33. https://doi.org/10.1016/S1046-5928(03)00018-4
  19. A. Ochiai, W. Hashimoto, K. Murata, Res. Microbiol. 157 (2006) 642. https://doi.org/10.1016/j.resmic.2006.02.006
  20. Y. Chisti, Trends Biotechnol. 26 (2008) 126. https://doi.org/10.1016/j.tibtech.2007.12.002
  21. P.T. Vasudevan, M. Briggs, J. Ind. Microbiol. Biotechnol. 35 (2008) 421. https://doi.org/10.1007/s10295-008-0312-2
  22. J.W. Shin, S.H. Choi, D.E. Kim, H.S. Kim, J.W. Lee, I.S. Lee, E.Y. Lee, Biopro. Biosys. Eng. 34 (2011) 113. https://doi.org/10.1007/s00449-010-0452-4
  23. H.H. Park, N. Kam, E.Y. Lee, H.S. Kim, Mar. Biotechnol. (2011), doi:10.1007/s10126-011-9402-7.

Cited by

  1. Alginate Lyase: Structure, Property, and Application vol.16, pp.5, 2011, https://doi.org/10.1007/s12257-011-0352-8
  2. Molecular identification of a polyM-specific alginate lyase from Pseudomonas sp. strain KS-408 for degradation of glycosidic linkages between two mannuronates or mannuronate and guluronate in alginate vol.57, pp.12, 2011, https://doi.org/10.1139/w11-106
  3. Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomas maltophilia KJ-2 vol.95, pp.6, 2011, https://doi.org/10.1007/s00253-012-4266-y
  4. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20 vol.40, pp.1, 2011, https://doi.org/10.1007/s10295-012-1210-1
  5. Comparative Biochemical Characterization of Three Exolytic Oligoalginate Lyases from Vibrio splendidus Reveals Complementary Substrate Scope, Temperature, and pH Adaptations vol.80, pp.14, 2011, https://doi.org/10.1128/aem.01285-14
  6. Molecular cloning and characterization of a novel acetylalginate esterase gene in alg operon from Sphingomonas sp. MJ-3 vol.98, pp.5, 2014, https://doi.org/10.1007/s00253-013-5126-0
  7. Site-Directed Mutagenesis-Based Functional Analysis and Characterization of Endolytic Lyase Activity of N- and C-Terminal Domains of a Novel Oligoalginate Lyase from Sphingomonas sp. MJ-3 Possessing E vol.17, pp.6, 2011, https://doi.org/10.1007/s10126-015-9658-4
  8. Molecular characterization of a novel oligoalginate lyase consisting of AlgL- and heparinase II/III-like domains from Stenotrophomonas maltophilia KJ-2 and its application to alginate saccharification vol.32, pp.5, 2015, https://doi.org/10.1007/s11814-014-0282-1
  9. 알긴산을 분해하는 해양미생물인 Sphingomonas sp. MJ-3 균주의 올리고알긴산 분해효소의 상동성 모델링 및 특성연구 vol.25, pp.2, 2011, https://doi.org/10.5352/jls.2015.25.2.121
  10. Effective production of fermentable sugars from brown macroalgae biomass vol.100, pp.22, 2011, https://doi.org/10.1007/s00253-016-7857-1
  11. Novel Alginate Lyase (Aly5) from a Polysaccharide-Degrading Marine Bacterium, Flammeovirga sp. Strain MY04: Effects of Module Truncation on Biochemical Characteristics, Alginate Degradation Patterns, vol.82, pp.1, 2011, https://doi.org/10.1128/aem.03022-15
  12. Engineering broad-spectrum digestion of polyuronides from an exolytic polysaccharide lyase vol.9, pp.None, 2011, https://doi.org/10.1186/s13068-016-0455-8
  13. Functional and Structural Studies of a Multidomain Alginate Lyase from Persicobacter sp. CCB-QB2 vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-13288-1
  14. Identification of 4-Deoxy-L-Etychro-Hexoseulose Uronic Acid Reductases in an Alginolytic Bacterium Vibrio splendidus and their Uses for L-Lactate Production in an Escherichia coli Cell-Free System vol.20, pp.3, 2011, https://doi.org/10.1007/s10126-018-9805-9
  15. Characterization of a Long-Lived Alginate Lyase Derived from Shewanella Species YH1 vol.16, pp.1, 2011, https://doi.org/10.3390/md16010004
  16. Evaluation of tropical seaweeds as feedstock for bioethanol production vol.15, pp.5, 2018, https://doi.org/10.1007/s13762-017-1455-3
  17. Saccharification of Brown Macroalgae Using an Arsenal of Recombinant Alginate Lyases: Potential Application in the Biorefinery Process vol.28, pp.10, 2011, https://doi.org/10.4014/jmb.1805.05056
  18. Optimization of enzymatic saccharification of fucoidan and alginate from brown seaweed using fucoidanase and alginate lyase from the marine fungus Dendryphiella arenaria vol.31, pp.3, 2011, https://doi.org/10.1007/s10811-018-1685-x
  19. Functional Characterization of a Novel Oligoalginate Lyase of Stenotrophomonas maltophilia KJ-2 Using Site-Specific Mutation Reveals Bifunctional Mode of Action, Possessing Both Endolytic and Exolytic vol.7, pp.None, 2011, https://doi.org/10.3389/fmars.2020.00420
  20. Cellulophaga algicola alginate lyase inhibits biofilm formation of a clinical Pseudomonas aeruginosa strain MCC 2081 vol.73, pp.2, 2011, https://doi.org/10.1002/iub.2442
  21. Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources vol.26, pp.3, 2011, https://doi.org/10.3390/molecules26030753
  22. Characterization of a New Biofunctional, Exolytic Alginate Lyase from Tamlana sp. s12 with High Catalytic Activity and Cold-Adapted Features vol.19, pp.4, 2021, https://doi.org/10.3390/md19040191
  23. Structure Characteristics, Biochemical Properties, and Pharmaceutical Applications of Alginate Lyases vol.19, pp.11, 2021, https://doi.org/10.3390/md19110628