DOI QR코드

DOI QR Code

Enhancement of TRAIL-Mediated Apoptosis by Genistein in Human Hepatocellular Carcinoma Hep3B Cells: Roles of p38 MAPK Signaling Pathway

인체간암세포에서 genistein의 TRAIL에 의한 apoptosis 유도 상승효과에서 미치는 p38 MAPK signaling pathway의 영향

  • Jin, Cheng-Yun (Department of Biomaterial Control (BK21 program) and Blue-Bio Industry Regional Innovation Center, Dongeui University) ;
  • Park, Cheol (Medical Research Institute, Chungbuk National University College of Medicine) ;
  • Park, Sang-Eun (Department of Internal Oriental Medicine, Dongeui University College of Oriental Medicine) ;
  • Hong, Sang-Hoon (Department of Internal Oriental Medicine, Dongeui University College of Oriental Medicine) ;
  • Choi, Yung-Hyun (Department of Biomaterial Control (BK21 program) and Blue-Bio Industry Regional Innovation Center, Dongeui University)
  • 김성윤 (동의대학교 대학원 바이오물질제어학과(BK21 program) 및 블루바이오소재개발센터) ;
  • 박철 (충북대학교 의과대학 의과학연구소) ;
  • 박상은 (동의대학교 한의과대학 내과학교실) ;
  • 홍상훈 (동의대학교 한의과대학 내과학교실) ;
  • 최영현 (동의대학교 대학원 바이오물질제어학과(BK21 program) 및 블루바이오소재개발센터)
  • Received : 2011.08.12
  • Accepted : 2011.11.02
  • Published : 2011.11.30

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in many types of transformed cells; however, some human hepatocellular carcinoma cells are particularly resistant to the effects of TRAIL. Although genistein, a natural isoflavonoid phytoestrogen, has been shown to have pro-apoptotic activity against human cancer cell lines, little is known about the mechanism of genistein in terms of TRAIL-induced apoptosis. In the present study, it was investigated whether or not combined treatment with genistein and TRAIL synergistically induced apoptosis in Hep3B hepatocarcinoma cells. Results indicate that treatment with TRAIL in combination with nontoxic concentrations of genistein sensitized TRAIL-resistant Hep3B cells to TRAIL-induced apoptosis, which was associated with mitochondrial dysfunction. Further, the inhibition of p38 mitogen-activated protein kinase (MAPK) activation markedly decreased genistein and TRAIL-induced cell viability and apoptosis by enhanced truncation of Bid, increase of pro-apoptotic Bax, decrease of anti-apoptotic Bcl-2, and release of cytochrome c from mitochondria to cytoplasm. Activation of caspases and degradation of poly (ADP-ribose) polymerase induced by the combined treatment was also markedly increased by the inhibition of p38 MAPK, through the mitochondrial amplification step. In conclusion, our data suggest that genistein sensitizes TRAIL-induced-apoptosis via p38 MAPK-dependent pathway.

TRAIL은 다양한 암세포에서 apoptosis를 유발하는 것으로 알려져 있으나 간암세포를 포함한 일부 암세포에서 TRAIL 저항성이 획득된 것으로 보고되어지고 있다. 대두의 대표적인 생리활성 물질인 isoflavonoid계열 genistein은 이미 많은 암세포에서 apoptotic 효능을 가진 것으로 알려져 있으나 TRAIL에 의한 apoptosis 유도에 미치는 영향과 기전에 대한 연구는 여전히 미비한 실정이다. 본 연구에서는 TRAIL 저항성을 가진 Hep3B 간암세포에서 TRAIL에 의한 apoptosis 유도를 genistein이 더욱 상승시킬 수 있음을 보고하고자 한다. 본 연구의 결과에 의하면, Hep3B 세포에 세포독성을 보이지 않는 범위의 genistein에 의한 TRAIL 유도 apoptosis 상승효과는 미토콘드리아의 기능 손상과 연관성이 있었다. 또한 genistein과 TRAIL 복합처리에 의한 apoptosis 유도는 p38 MAPK 활성 저하로 더욱 상승하였으며, 이는 Bid의 truncation 증가, pro-apoptotic 단백질인 Bax의 발현 증가와 anti-apoptotic Bcl-2의 발현 감소 및 미토콘드리아에서 세포질로의 cytochrome c 유출의 증가와 연관성이 있었다. 또한 p38 MAPK 억제제는 genistein 및 TRAIL 복합처리에 의한 caspase의 활성 증가와 PARP 단백질의 단편화를 촉진시켰으며, 이는 미토콘드리아의 기능적 손상 증가에 의한 것임을 알 수 있었다. 따라서 본 연구의 결과는 genistein이 TRAIL에 의한 apoptosis 유도를 효과적으로 증가시킬 수 있으며, 이러한 과정이 p38 MAPK 의존적으로 이루어짐을 알 수 있었다.

Keywords

References

  1. Abdollahi, T. 2004. Potential for TRAIL as a therapeutic agent in ovarian cancer. Vitam. Horm. 67, 347-364. https://doi.org/10.1016/S0083-6729(04)67018-X
  2. Abdollahi, T., N. M. Robertson, A. Abdollahi, and G. Litwack. 2005. Inhibition of TRAIL-induced apoptosis by IL-8 is mediated by the p38-MAPK pathway in OVCAR3 cells. Apoptosis 10, 1383-1393. https://doi.org/10.1007/s10495-005-2139-x
  3. Ashkenazi, A., R. C. Pai, S. Fong, S. Leung, D. A. Lawrence, S. A. Marsters, C. Blackie, L. Chang, A. E. McMurtrey, A. Hebert, L. DeForge, I. L. Koumenis, D. Lewis, L. Harris, J. Bussiere, H. Koeppen, Z. Shahrokh, and R. H. Schwall. 1999. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155-162. https://doi.org/10.1172/JCI6926
  4. Chawla-Sarker, M., S. I. Bae, F. J. Reu, B. S. Jacobs, D. J. Lindner, and E. C. Borden. 2004. Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ. 11, 915-923. https://doi.org/10.1038/sj.cdd.4401416
  5. Choi, K., S. Song, and C. Choi. 2008. Requirement of caspases and p38 MAPK for TRAIL-mediated ICAM-1 expression by human astroglial cells. Immunol. Lett. 117, 168-173. https://doi.org/10.1016/j.imlet.2008.01.010
  6. Choi, Y. H., W. H. Lee, K. Y. Park, and L. Zhang. 2000. p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn. J. Cancer Res. 91, 164-173. https://doi.org/10.1111/j.1349-7006.2000.tb00928.x
  7. Choi, Y. H., L. Zhang, W. H. Lee, and K. Y. Park. 1998. Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. Int. J. Oncol. 13, 391-396.
  8. Cohen, J. H., A. R. Kristal, and J. L. Stanford. 2000. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer Inst. 5, 61-68.
  9. Conklin, C. M., J. F. Bechberger, D. McFabe, N. Guthrie, E. M. Kurowska, and C. C. Naus. 2007. Genistein and quercetin increase connexin43 and suppress growth of breast cancer cells. Carcinogenesis 28, 93-100. https://doi.org/10.1093/carcin/bgl106
  10. Gonzalez-Guerrico, A. M. and M. G. Kazanietz. 2005. Phorbol ester-induced apoptosis in prostate cancer cells via autocrine activation of the extrinsic apoptotic cascade: a key role for protein kinase C delta. J. Biol. Chem. 280, 38982-38991. https://doi.org/10.1074/jbc.M506767200
  11. Guicciardi, M. E., S. F. Bronk, N. W. Werneburg, and G. J. Gores. 2007. cFLIPL prevents TRAIL-induced apoptosis of hepatocellular carcinoma cells by inhibiting the lysosomal pathway of apoptosis. Am. J. Physiol. Gastrointest Liver Physiol. 292, 1337-1346. https://doi.org/10.1152/ajpgi.00497.2006
  12. Hao, C., J. H. Song, B. His, J. Lewis, D. K. Song, K. C. Petruk, D. L. Tyrrell, and N. M. Kneteman. 2004. TRAIL inhibits tumor growth but is nontoxic to human hepatocytes in chimeric mice. Cancer Res. 64, 8502-8506. https://doi.org/10.1158/0008-5472.CAN-04-2599
  13. Jin, C. Y., C. Park, J. Cheong, B. T. Choi, T. H. Lee, J. D. Lee, W. H. Lee, G. Y. Kim, C. H. Ryu, and Y. H. Choi. 2007. Genistein sensitizes TRAIL-resistant human gastric adenocarcinoma AGS cells through activation of caspase-3. Cancer Lett 257, 56-64. https://doi.org/10.1016/j.canlet.2007.06.019
  14. Jin, C. Y., C. Park, G. Y. Kim, S. J. Lee, W. J. Kim, and Y. H. Choi. 2009. Genistein enhances TRAIL-induced apoptosis through inhibition of p38 MAPK signaling in human hepatocellular carcinoma Hep3B cells. Chem. Biol. Interact. 180, 143-150. https://doi.org/10.1016/j.cbi.2009.03.020
  15. Jin, C. Y., C. Park, S. K. Moon, G. Y. Kim, T. K. Kwon, S. J. Lee, W. J. Kim, and Y. H. Choi. 2009. Genistein sensitizes human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by enhancing Bid cleavage. Anticancer Drugs 20, 713-722. https://doi.org/10.1097/CAD.0b013e32832e8998
  16. Kang, J. L., H. W. Lee, H. J. Kim, H. S. Lee, V. Castranova, C. M. Lim, and Y. Koh. 2005. Inhibition of SRC tyrosine kinases suppresses activation of nuclear factor-$\kappa$B, and serine and tyrosine phosphorylation of $I{\kappa}B-\alpha$ in lipopolysaccharide- stimulated raw 264.7 macrophages. J. Toxicol. Environ. Health 68, 1643-1662. https://doi.org/10.1080/15287390500192114
  17. Kim, H., E. H. Kim, Y. W. Eom, W. H. Kim, T. K. Kwon, S. J. Lee, and K. S. Choi. 2006. Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer Res. 66, 1740-1750. https://doi.org/10.1158/0008-5472.CAN-05-1568
  18. Kim, S. H., S. H. Kim, S. C. Lee, and Y. S. Song. 2009. Involvement of both extrinsic and intrinsic apoptotic pathways in apoptosis induced by genistein in human cervical cancer cells. Ann. N Y Acad. Sci. 1171, 196-201. https://doi.org/10.1111/j.1749-6632.2009.04902.x
  19. Kim, Y. H., J. W. Park, J. Y. Lee, and T. K. Kwon. 2004. Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells. Carcinogenesis 25, 1813-1820. https://doi.org/10.1093/carcin/bgh188
  20. Kim, Y. S., R. F. Schwabe, T. Qian, J. J. Lemasters, and D. A. Brenner. 2002. TRAIL-mediated apoptosis requires NF-$\kappa$ B inhibition and the mitochondrial permeability transition in human hepatoma cells. Hepatology 36, 1498-1508.
  21. Kischkel, F. C., D. A. Lawrence, A. Chuntharapai, P. Schow, K. J. Kim, and A. Ashkenazi. 2000. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611-620. https://doi.org/10.1016/S1074-7613(00)80212-5
  22. Lamy, V., S. Bousserouel, F. Gosse, C. Minker, A. Lobstein, and F. Raul. 2011. Lupulone triggers p38 MAPK-controlled activation of p53 and of the TRAIL receptor apoptotic pathway in human colon cancer-derived metastatic cells. Oncol. Rep. 26, 109-114.
  23. LeBlanc, H., D. Lawrence, E. Varfrolomeev, K. Totpal, J. Morlan, P. Schow, S. Fong, R. Schwall, D. Sinicropi, and A. Ashkenazi. 2002. Tumor-cell resistance to death receptor- induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat. Med. 8, 274-281. https://doi.org/10.1038/nm0302-274
  24. Lee, J., J. S. Shin, J. Y. Park, D. Kwon, S. J. Choi, S. J. Kim, and I. H. Choi. 2003. p38 mitogen-activated protein kinase modulates expression of tumor necrosis factor-related apoptosis- inducing ligand induced by interferon-gamma in fetal brain astrocytes. J. Neurosci. Res. 74, 884-890. https://doi.org/10.1002/jnr.10815
  25. Lee, M. W., J. H. Bach, H. J. Lee, D. Y. Lee, W. S. Joo, Y. S. Kim, S. C. Park, K. Y. Kim, W. B. Lee, and S. S. Kim. 2005. The activation of ERK1/2 via a tyrosine kinase pathway attenuates trail-induced apoptosis in HeLa cells. Cancer Invest 23, 586-592. https://doi.org/10.1080/07357900500283036
  26. Lub-de Hooge, M. N., S. de Jong, C. Vermot-Desroches, J. E. Tulleken, E. G. de Vries, and J. G. Zijlstra. 2004. Endotoxin increases plasma soluble tumor necrosis factor-related apoptosis- inducing ligand level mediated by the p38 mitogen- activated protein kinase signaling pathway. Shock 22, 186-188. https://doi.org/10.1097/01.shk.0000132486.82177.ec
  27. Park, J. H., E. J. Oh, Y. H. Choi, C. D. Kang, H. S. Kang, D. K. Kim, K. I. Kang, and M. A. Yoo. 2001. Synergistic effects of dexamethasone and genistein on the expression of Cdk inhibitor p21WAF1/CIP1 in human hepatocellular and colorectal carcinoma cells. Int. J. Oncol. 18, 997-1002.
  28. Pei, Z., L. Chu, W. Zou, Z. Zhang, S. Qiu, R. Qi, J. Gu, C. Qian, and X. Liu. 2004. An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology 39, 1371-1381. https://doi.org/10.1002/hep.20203
  29. Pinski, J., Q. Wang, M. L. Quek, A. Cole, J. Cooc, K. Danenberg, and P. V. Danenberg. 2006. Genistein-induced neuroendocrine differentiation of prostate cancer cells. Prostate 66, 1136-1143. https://doi.org/10.1002/pros.20440
  30. Raffoul, J. J., Y. Wang, O. Kucuk, J. D. Forman, F. H. Sarkar, and G. G. Hillman. 2006. Genistein inhibits radiation-induced activation of NF-$\kappa$B in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer 6, 107. https://doi.org/10.1186/1471-2407-6-107
  31. Ravindranath, M. H., S. Muthugounder, N. Presser, and S. Viswanathan. 2004. Anticancer therapeutic potential of soy isoflavone, genistein. Adv. Exp. Med. Biol. 546, 121-165. https://doi.org/10.1007/978-1-4757-4820-8_11
  32. Sarkar, F. H., S. Adsule, S. Padhye, S. Kulkarni, and Y. Li. 2006. The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Rev. Med. Chem. 6, 401-407. https://doi.org/10.2174/138955706776361439
  33. Shankar, S, and R. Srivastava. 2004. Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 7, 139-156. https://doi.org/10.1016/j.drup.2004.03.002
  34. Srivastava, R. K. 2001. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 3, 535-546. https://doi.org/10.1038/sj.neo.7900203
  35. Van Geelen, C. M., E. G. de Vries, and S. de Jong. 2004. Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist Updat 7, 345-358. https://doi.org/10.1016/j.drup.2004.11.002
  36. Wang, C., T. Chen, N. Zhang, M. Yang, B. Li, X. Lu, X. Cao, and C. Ling. 2009. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1- JNK/p38 and inhibiting $I{\kappa}B{\alpha}$ kinase-NF$\kappa$B. J. Biol. Chem. 284, 3804-3813. https://doi.org/10.1074/jbc.M807191200
  37. Weldon, C. B., A. P. Parker, D. Patten, S. Elliott, Y. Tang, D. E. Frigo, C. M. Dugan, E. L. Coakley, N. N. Butler, J. L. Clayton, J. Alam, T. J. Curiel, B. S. Beckman, B. M. Jaffe, and M. E. Burow. 2004. Sensitization of apoptotically- resistant breast carcinoma cells to TNF and TRAIL by inhibition of p38 mitogen-activated protein kinase signaling. Int. J. Oncol. 24, 1473-1480.
  38. Yamanaka, T., K. Shiraki, K. Sugimoto, T. Ito, K. Fujikawa, M. Ito, K. Takase, M. Moriyama, T. Nakano, and A. Suzuki. 2000. Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology 32, 482-490. https://doi.org/10.1053/jhep.2000.16266
  39. Zauli, G., E. Rimondi, V. Nicolin, E. Melloni, C. Celeghini, and P. Secchiero. 2004. TNF-related apoptosis-inducing ligand (TRAIL) blocks osteoclastic differentiation induced by RANKL plus M-CSF. Blood 104, 2044-2050. https://doi.org/10.1182/blood-2004-03-1196

Cited by

  1. Apoptotic Effect of Pinosylvin at a High Concentration Regulated by c-Jun N-Terminal Kinase in Bovine Aortic Endothelial Cells vol.25, pp.4, 2015, https://doi.org/10.5352/JLS.2015.25.4.416