DOI QR코드

DOI QR Code

A solid-state NMR study on the activity of an antimicrobial peptide, magainin 2

항균성 펩타이드인 magainin 2의 활성에 대한 고체 핵자기 공명 분광 연구

  • Kim, Chul (Department of Chemistry, Hannam University)
  • 김철 (한남대학교 화학과)
  • Received : 2011.12.05
  • Accepted : 2011.12.08
  • Published : 2011.12.25

Abstract

The activity of an antimicrobial peptide, magainin 2, on lipid membranes was investigated using solid-state NMR and a new sampling method that employed mechanically aligned bilayers between thin glass plates. The experiments were performed at two hydration levels. At 95% hydration about 15% of the lipid bilayers were disrupted and at full hydration 20% were disrupted. From the comparison of two equilibrium states established by two sampling methods the importance of peptide binding to the lipid bilayer for whole membrane disruption was demonstrated.

얇은 유리판 위에 정렬된 지질 이중막에 작용하는 항균성 펩타이드 magainin 2의 작용활성을 고체 핵자기 공명 분광법을 이용하여 조사하였다. 수화에 따른 지질 이중막의 파괴정도를 파악하기 위해 두 가지 수화 상태에서 실험이 이루어졌다. 95%의 상대 습도에서 수화된 지질 이중막에서는 약 15% 정도의 지질 이중막이 파괴되었으며, 완전히 수화된 지질 이중막에서는 약 20% 정도의 지질 이중막이 파괴되었다. 두 가지 시료 제조방법에 따른 지질 이중막 파괴 정도의 비교를 통해, 항균성 펩타이드의 지질 이중막 결합과정이 지질 이중막 파괴에 중요한 변수임을 알 수 있었다.

Keywords

References

  1. R. Latorre and O. Alvarez, Physiol. Rev., 61, 77-150 (1981). https://doi.org/10.1152/physrev.1981.61.1.77
  2. H. Steiner, D. Hultmark, A. Engstrom, H. Bennich, H. G. Boman, Nature, 292, 246-248 (1981). https://doi.org/10.1038/292246a0
  3. J. Y. Lee, A. Boman, C. X. Sun, M. Andersson, H. Jornvall, V. Mutt and H. G. Boman, Proc. Natl. Acad. Sci. U.S.A., 86, 9159-9162 (1989). https://doi.org/10.1073/pnas.86.23.9159
  4. K. J. Hallock, D. K. Lee and A. Ramamoorthy, Biophys. J., 84, 3052-3060 (2003). https://doi.org/10.1016/S0006-3495(03)70031-9
  5. P. M Hwang and H. J. Vogel, Biochem. Cell Biol., 76, 235-246 (1998). https://doi.org/10.1139/o98-026
  6. M. Zasloff, Proc. Natl. Acad. Sci. U.S.A., 84, 5449- 5453 (1987). https://doi.org/10.1073/pnas.84.15.5449
  7. J. J. Buffy, A. J. Waring and M. Hong, J. Am. Chem. Soc., 127, 4477-4483 (2005). https://doi.org/10.1021/ja043621r
  8. M. R. Yeaman and N. Y. Yount, Pharmacol. Rev., 55, 27-55 (2003). https://doi.org/10.1124/pr.55.1.2
  9. R. Mani, A. J. Waring, R. I. Lehrer and M. Hong, Biochim. Biophys. Acta, Biomembr., 1716, 11-18 (2005). https://doi.org/10.1016/j.bbamem.2005.08.008
  10. Y. Bai, S. Liu, P. Jiang, L. Zhou, J. Li, C. Tang, C. Verma, Y. Mu, R. W. Beuerman and K. Pervushin, Biochemistry, 48, 7229-7239 (2009). https://doi.org/10.1021/bi900670d
  11. O. Toke, Biopolymers, 80, 717-735 (2005). https://doi.org/10.1002/bip.20286
  12. A. Pokorny and P. F. F. Almeida, Biochemistry, 44, 9538-9544 (2005). https://doi.org/10.1021/bi0506371
  13. K. Matsuzaki, O. Murase, N. Fujii and K. Miyajima, Biochemistry, 34, 6521-6526 (1995). https://doi.org/10.1021/bi00019a033
  14. K. Matsuzaki, K.-I. Sugishita, N. Ishibe, M. Ueha, S. Nakata, K. Miyajima and R. M. Epand, Biochemistry 37, 11856-11863 (1998). https://doi.org/10.1021/bi980539y
  15. Y. Herasimenka, M. Benincasa, M. Mattiuzzo, P. Cescutti, R. Gennaro and R. Rizzo, Peptides, 26, 1127-1132 (2005). https://doi.org/10.1016/j.peptides.2005.01.020
  16. J.-A. Richard, I. Kelly, D. Marion, M. Pezolet and M. Auger, Biophys. J., 83, 2074-2083 (2002). https://doi.org/10.1016/S0006-3495(02)73968-4
  17. S. Yamaguchi, T. Hong, A. Waring, R. I. Lehrer, M. Hong, Biochemistry, 41, 9852-9862 (2002). https://doi.org/10.1021/bi0257991
  18. B. Bechinger, Biochim. Biophys. Acta, Biomembr., 1712, 101-108 (2005). https://doi.org/10.1016/j.bbamem.2005.03.003
  19. R. Mani, M. Tang, X. Wu, J. J. Buffy, A. J. Waring, M. A. Sherman and M. Hong, Biochemistry, 45, 8341-8349 (2006). https://doi.org/10.1021/bi060305b
  20. J. J. Buffy, M. J. McCormick, S. Wi, A. Waring, R. I. Lehrer and M. Hong, Biochemistry, 43, 9800-9812 (2004). https://doi.org/10.1021/bi036243w
  21. S. Wi and C. Kim, J. Phys. Chem. B, 112, 11402- 11414 (2008). https://doi.org/10.1021/jp801825k
  22. C. Kim and S. Wi, Bull. Korean Chem. Soc., in press, (2012).
  23. K. Matsuzaki, O. Murase and K. Miyajima, Biochemistry, 34, 12553-12559 (1995). https://doi.org/10.1021/bi00039a009
  24. S. J. Ludtke, K. He, Y. Wu and H. W. Huang, Biochim. Biophys. Acta, Biomembr., 1190, 181-184 (1994) https://doi.org/10.1016/0005-2736(94)90050-7
  25. R. Mani, J. J. Buffy, A. J. Waring, R. I. Lehrer and M. Hong, Biochemistry, 43, 13839-13848 (2004). https://doi.org/10.1021/bi048650t
  26. K. J. Hallock, D.-K. Lee, J. Omnaas, H. I. Mosberg and A. Ramamoorthy, Biophys. J., 83, 1004-1013 (2002). https://doi.org/10.1016/S0006-3495(02)75226-0
  27. E. W. Washburn, C. J. West and C. Hull, International Critical Tables of Numerical Data, Physics, Chemistry, and Technology; McGraw-Hill: New York, 1926.

Cited by

  1. A2H solid-state NMR study on the lipid phase change in the presence of an antimicrobial peptide vol.26, pp.1, 2013, https://doi.org/10.5806/AST.2013.26.1.061