DOI QR코드

DOI QR Code

Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites

  • Cho, Mi-Jung (Department of Wood Science and Technology, Kyungpook National University) ;
  • Park, Byung-Dae (Department of Wood Science and Technology, Kyungpook National University)
  • Published : 2011.01.25

Abstract

This work reports on the mechanical and thermal properties of poly(vinyl alcohol) (PVA) nanocomposites reinforced with nanocelluloses isolated by the sulfuric acid hydrolysis using commercial microcrystalline cellulose (MCC). Nanocellulose-reinforced PVA nanocomposite films were prepared by the casting method with different nanocellulose loadings, which were exposed to tensile test, thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The nanocellulose obtained by the acid hydrolysis was a rod-like whisker form. Wet particle size analysis resulted in an average size of about 340 nm. But, the measurements of individual nanocelluloses using transmission electron microscopy (TEM) provided the dimensions of about 6.96 nm wide and 178 nm long. The crystallinity of the nanocellulose was quite high (85.2%), which was greater than that of the MCC. The tensile modulus and strength of the nanocomposites were improved with an increase in the nanocellulose content, but decreased at the nanocellulose content of 7 wt%. Thermal stability of the nanocomposites was improved as the nanocellulose content increased up to 7 wt%. The DMA result shows a significant increase of the storage modulus of the nanocomposite at the 3 wt% nanocellulose. These results indicate that the nanocellulose has a great potential to reinforce PVA polymers.

Keywords

References

  1. M. Sain, K. Oksman, in: K. Oksman, M. Sain (Eds.), ACS Symposium Series 938, Washington, DC, USA, (2005), p. 2.
  2. D. Nabi Saheb, J.P. Joe, Advances in Polymer Technology 18 (1999) 351. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
  3. K. Tashiro, M. Kobayashi, Polymer 32 (1991) 1516. https://doi.org/10.1016/0032-3861(91)90435-L
  4. A. Sturcova, G.R. Davies, S.J. Eichhorn, Biomacromolecules 6 (2005) 1055. https://doi.org/10.1021/bm049291k
  5. V. Favier, G.R. Canova, J.Y. Cavaille, H. Chanzy, A. Dufresne, C. Gauthier, Polymer for Advanced Technologies 6 (1995) 351. https://doi.org/10.1002/pat.1995.220060514
  6. J. Leitner, B.Hinterstoisser, M.Wastyn, J. Keckes,W.Gindle, Cellulose 14 (2007) 419. https://doi.org/10.1007/s10570-007-9131-2
  7. Q. Cheng, S. Wang, T.G. Rials, Composites: Part A 40 (2009) 218.
  8. T. Zimmermann, E. Pohler, T. Geiger, Advanced Engineering Materials 6 (2004) 754. https://doi.org/10.1002/adem.200400097
  9. J. Sriupayo, P. Supaphol, J. Blackwell, R. Rujiravanit, Polymer 46 (2005) 5637. https://doi.org/10.1016/j.polymer.2005.04.069
  10. Q. Cheng, S. Wang, T.G. Rials, S.H. Lee, Cellulose 14 (2007) 593. https://doi.org/10.1007/s10570-007-9141-0
  11. I. Kvien, K. Oksman, Applied Physics A 87 (2007) 641. https://doi.org/10.1007/s00339-007-3882-3
  12. J. Lu, T. Wang, L.T. Drzal, Composites: Part A 39 (2008) 738. https://doi.org/10.1016/j.compositesa.2008.02.003
  13. A. Thygesen, J. Oddershede, H. Lilholt, A.B. Thomsen, S. Kenny, Cellulose 12 (2005) 563. https://doi.org/10.1007/s10570-005-9001-8
  14. L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, Textile Research Journal 29 (1959) 786. https://doi.org/10.1177/004051755902901003
  15. D. Bondeson, A. Mathew, K. Oksman, Cellulose 13 (2006) 171. https://doi.org/10.1007/s10570-006-9061-4
  16. M.R. Piggott, Load Bearing Fibre Composites, 2nd ed., Pergamon Press, Toronto, 1987.

Cited by

  1. Dynamics, thermal behaviour and elastic properties of thin films of poly(vinyl alcohol) nanocomposites vol.2, pp.4, 2011, https://doi.org/10.1039/c1ra00535a
  2. Biorefining of perennial ryegrass for the production of nanofibrillated cellulose vol.2, pp.16, 2011, https://doi.org/10.1039/c2ra20716h
  3. Characterization of Electrospun Nanofibers of Cellulose Nanowhisker/Polyvinyl Alcohol Composites vol.40, pp.2, 2011, https://doi.org/10.5658/wood.2012.40.2.71
  4. Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil vol.20, pp.1, 2011, https://doi.org/10.1007/s10570-012-9795-0
  5. Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels vol.20, pp.5, 2011, https://doi.org/10.1007/s10570-013-9988-1
  6. Crosslinked nanofibrillated cellulose: poly(acrylic acid) nanocomposite films; enhanced mechanical performance in aqueous environments vol.20, pp.6, 2011, https://doi.org/10.1007/s10570-013-0061-x
  7. Isolation, Characterization, and Application of Nanocellulose from Oil Palm Empty Fruit Bunch Fiber as Nanocomposites vol.2014, pp.None, 2011, https://doi.org/10.1155/2014/702538
  8. Preparation of Nanocrystalline Cellulose from Corncob Acid-Hydrolysis Residue and Its Reinforcement Capabilities on Polyvinyl Alcohol Membranes vol.22, pp.8, 2014, https://doi.org/10.1177/096739111402200804
  9. Adhesion and Surface Issues in Biocomposites and Bionanocomposites vol.2, pp.2, 2011, https://doi.org/10.7569/raa.2014.097303
  10. Nanofibrillated cellulose, poly(vinyl alcohol), montmorillonite clay hybrid nanocomposites with superior barrier and thermomechanical properties vol.35, pp.6, 2011, https://doi.org/10.1002/pc.22759
  11. A cellulose nanocrystal-based composite electrolyte with superior dimensional stability for alkaline fuel cell membranes vol.3, pp.25, 2011, https://doi.org/10.1039/c5ta02304a
  12. Manipulation of Surface Carboxyl Content on TEMPO-Oxidized Cellulose Fibrils vol.43, pp.5, 2011, https://doi.org/10.5658/wood.2015.43.5.613
  13. Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs) vol.23, pp.3, 2016, https://doi.org/10.1007/s10570-016-0925-y
  14. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse vol.107, pp.None, 2011, https://doi.org/10.1088/1757-899x/107/1/012045
  15. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils vol.9, pp.1, 2011, https://doi.org/10.3390/ma9010050
  16. Effect of copper sulfate pentahydrate on the structure and properties of poly(vinyl alcohol)/graphene oxide composite films vol.133, pp.46, 2016, https://doi.org/10.1002/app.44135
  17. Preparation of Cellulose Nanocrystals Bio-Polymer from Agro-Industrial Wastes: Separation and Characterization vol.24, pp.9, 2011, https://doi.org/10.1177/096739111602400907
  18. Poly(vinyl alcohol) Hydrogels Reinforced with Nanocellulose for Ophthalmic Applications: General Characteristics and Optical Properties vol.120, pp.51, 2011, https://doi.org/10.1021/acs.jpcb.6b10650
  19. Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel vol.24, pp.5, 2011, https://doi.org/10.1007/s10570-017-1251-8
  20. Effect of varying hydrolysis time on extraction of spherical bacterial cellulose nanocrystals as a reinforcing agent for poly(vinyl alcohol) composites vol.24, pp.5, 2011, https://doi.org/10.1007/s10965-017-1232-5
  21. Mechanical reinforcement of a cellulose aerogel with nanocrystalline cellulose as reinforcer vol.7, pp.55, 2011, https://doi.org/10.1039/c7ra04904h
  22. PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application vol.56, pp.12, 2011, https://doi.org/10.1080/03602559.2016.1275684
  23. Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis vol.10, pp.1, 2011, https://doi.org/10.3390/ma10010080
  24. Mechanical behavior of nanocellulose coated jute/green epoxy composites vol.254, pp.None, 2011, https://doi.org/10.1088/1757-899x/254/4/042015
  25. Processing and Properties of PCL/Cotton Linter Compounds vol.20, pp.2, 2011, https://doi.org/10.1590/1980-5373-mr-2016-0084
  26. 2D Ti 3 C 2 T x (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties vol.12, pp.8, 2011, https://doi.org/10.1371/journal.pone.0183705
  27. Effect of Chitosan on the Properties of Electrospun Fibers From Mixed Poly(Vinyl Alcohol)/Chitosan Solutions vol.20, pp.4, 2017, https://doi.org/10.1590/1980-5373-mr-2016-0618
  28. Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites vol.37, pp.9, 2011, https://doi.org/10.1515/polyeng-2017-0022
  29. Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose composites vol.37, pp.9, 2011, https://doi.org/10.1515/polyeng-2017-0022
  30. Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes vol.177, pp.None, 2011, https://doi.org/10.1016/j.carbpol.2017.08.125
  31. Properties of Poly(Vinyl Alcohol)/Chitosan Nanocomposite Films Reinforced with Oil Palm Empty Fruit Bunch Amorphous Lignocellulose Nanofibers vol.26, pp.8, 2011, https://doi.org/10.1007/s10924-018-1215-6
  32. TEMPO-treated CNF Composites: Pulp and Matrix Effect vol.19, pp.1, 2011, https://doi.org/10.1007/s12221-018-7673-y
  33. Micro-Fibril Cellulose as a Filler for Glass Fiber Reinforced Unsaturated Polyester Composites: Fabrication and Mechanical Characteristics vol.26, pp.1, 2011, https://doi.org/10.1007/s13233-018-6006-3
  34. Effects of Lignin Content on Mechanical and Thermal Properties of Polypropylene Composites Reinforced with Micro Particles of Spray Dried Cellulose Nanofibrils vol.6, pp.8, 2011, https://doi.org/10.1021/acssuschemeng.8b02544
  35. Modified iron phosphate/polyvinyl alcohol composite film for controlled-release fertilisers vol.8, pp.32, 2011, https://doi.org/10.1039/c8ra01843j
  36. Spraying Cellulose Nanofibrils for Improvement of Tensile and Barrier Properties of Writing & Printing (W&P) Paper vol.38, pp.3, 2018, https://doi.org/10.1080/02773813.2018.1432656
  37. Review on Nanocellulose Polymer Nanocomposites vol.57, pp.13, 2011, https://doi.org/10.1080/03602559.2017.1381253
  38. 나노피브릴화 셀룰로오스의 제조 및 PVA 복합필름의 성질에 미치는 효과 vol.42, pp.1, 2011, https://doi.org/10.7317/pk.2018.42.1.52
  39. Ultrasound-assisted conversion of cellulose into hydrogel and functional carbon material vol.25, pp.4, 2011, https://doi.org/10.1007/s10570-018-1746-y
  40. Mechanically improved polyvinyl alcohol-composite films using modified cellulose nanowhiskers as nano-reinforcement vol.191, pp.None, 2011, https://doi.org/10.1016/j.carbpol.2018.03.001
  41. Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review vol.25, pp.8, 2011, https://doi.org/10.1007/s10570-018-1879-z
  42. Review on cellulose nanocrystals (CNCs) as reinforced agent on electrospun nanofibers: mechanical and thermal properties vol.440, pp.None, 2018, https://doi.org/10.1088/1757-899x/440/1/012011
  43. Composites polyvinyl alcohol filled with nanocellulose from oil palm waste by formic acid hydrolysis vol.268, pp.None, 2019, https://doi.org/10.1051/matecconf/201926804012
  44. Preparation of nanocellulose and its potential in reinforced composites: A review vol.30, pp.11, 2011, https://doi.org/10.1080/09205063.2019.1612726
  45. Modulable properties of PVA/cellulose fiber composites vol.17, pp.1, 2011, https://doi.org/10.1177/2280800019831224
  46. Fabrication and Evaluation of Bio-Based Nanocomposite TFC Hollow Fiber Membranes for Enhanced CO2 Capture vol.11, pp.11, 2019, https://doi.org/10.1021/acsami.8b19651
  47. A comprehensive review on analysis of nanocomposites: from manufacturing to properties characterization vol.6, pp.9, 2019, https://doi.org/10.1088/2053-1591/ab3175
  48. A comprehensive review on analysis of nanocomposites: from manufacturing to properties characterization vol.6, pp.9, 2019, https://doi.org/10.1088/2053-1591/ab3175
  49. Polymer Composites Reinforced with Natural Fibers and Nanocellulose in the Automotive Industry: A Short Review vol.3, pp.2, 2011, https://doi.org/10.3390/jcs3020051
  50. Electron Beam Irradiation Isolates Cellulose Nanofiber from Korea “Tall Goldenrod” Invasive Alien Plant Pulp vol.9, pp.10, 2011, https://doi.org/10.3390/nano9101358
  51. Production of cellulose nanofibrils from alfa fibers and its nanoreinforcement potential in polymer nanocomposites vol.26, pp.18, 2011, https://doi.org/10.1007/s10570-019-02767-5
  52. Preliminary study of fragment simulating projectile on epoxy-ramie composite vol.1446, pp.None, 2020, https://doi.org/10.1088/1742-6596/1446/1/012001
  53. Cellulose nanocrystal-reinforced poly(5-triethoxysilyl-2-norbornene) composites vol.11, pp.2, 2020, https://doi.org/10.1039/c9py00963a
  54. Preparation of cyanobacteria-enhanced poly(vinyl)alcohol-based films with resistance to blue-violet light / red light and water vol.15, pp.2, 2020, https://doi.org/10.1371/journal.pone.0228814
  55. Drying of the Natural Fibers as A Solvent-Free Way to Improve the Cellulose-Filled Polymer Composite Performance vol.12, pp.2, 2011, https://doi.org/10.3390/polym12020484
  56. Microstructure and Thermal and Tensile Properties of Poly(vinyl alcohol) Nanocomposite Films Reinforced by Polyacrylamide Grafted Cellulose Nanocrystals vol.59, pp.4, 2011, https://doi.org/10.1080/00222348.2019.1710364
  57. Kombucha Tea By-product as Source of Novel Materials: Formulation and Characterization of Films vol.13, pp.7, 2011, https://doi.org/10.1007/s11947-020-02471-4
  58. Sustainable, High-Barrier Polyaleuritate/Nanocellulose Biocomposites vol.8, pp.29, 2011, https://doi.org/10.1021/acssuschemeng.0c00909
  59. Development of fiber-reinforced polypropylene with NaOH pretreated rice and coffee husks as fillers: Mechanical and thermal properties vol.33, pp.9, 2011, https://doi.org/10.1177/0892705718823255
  60. Storage study of grapes ( Vitis vinifera ) using the nanocomposite biodegradable film from banana pseudostem vol.44, pp.12, 2011, https://doi.org/10.1111/jfpp.14917
  61. High-Performance Biocomposite Polyvinyl Alcohol (PVA) Films Modified with Cellulose Nanocrystals (CNCs), Tannic Acid (TA), and Chitosan (CS) for Food Packaging vol.2021, pp.None, 2011, https://doi.org/10.1155/2021/4821717
  62. Understanding interfacial dispersions in ecobenign polymer nano-biocomposites vol.60, pp.3, 2011, https://doi.org/10.1080/25740881.2020.1811312
  63. Cellulose and cellulose derivatives: Different colloidal states and food-related applications vol.255, pp.None, 2011, https://doi.org/10.1016/j.carbpol.2020.117334
  64. Optimization of nanocomposite films based on quinoa protein isolate incorporated with cellulose nanocrystal and starch vol.45, pp.11, 2011, https://doi.org/10.1111/jfpp.15926
  65. Cellulose bionanocomposites for sustainable planet and people: A global snapshot of preparation, properties, and applications vol.2, pp.None, 2011, https://doi.org/10.1016/j.carpta.2021.100065
  66. Fabrication of bionanocomposites reinforced with hemp nanocellulose and evaluation of their mechanical, thermal and dynamic mechanical properties vol.235, pp.11, 2011, https://doi.org/10.1177/14644207211004640
  67. Synthesis and Physicochemical Properties of Poly(vinyl) Alcohol Nanocomposites Reinforced with Nanocrystalline Cellulose from Tea (Camellia sinensis) Waste vol.14, pp.23, 2011, https://doi.org/10.3390/ma14237154
  68. Physicochemical and Structural Properties of Green Biofilms from Poly (Vinyl alcohol)/Nano Coconut Shell Filler vol.18, pp.12, 2011, https://doi.org/10.1080/15440478.2020.1723778