DOI QR코드

DOI QR Code

Location and structure of coke generated over Pt-Sn/$Al_{2}O_{3}$ in propane dehydrogenation

  • Vu, Bao Khanh (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Song, Myoung Bok (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Ahn, In Young (Korea Institute of Science and Technology) ;
  • Suh, Young-Woong (Korea Institute of Science and Technology) ;
  • Suh, Dong Jin (Korea Institute of Science and Technology) ;
  • Kim, Jae Sung (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Shin, Eun Woo (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • Published : 2011.01.25

Abstract

Pt and Pt-Sn/alumina catalysts were prepared by either an incipient wetness impregnation or coimpregnation method, and their deactivation behavior, coke structure and coke location in propane dehydrogenation were investigated by XRD, XPS, TPO and reaction tests. The XRD and XPS measurements confirmed that coke structure over all spent catalysts was pregraphite-like carbon, which presents at $2{\theta}=25^{\circ}$ in XRD patterns and binding energy = 283.9 eV in XPS spectra. In the TPO results, along with Sn contents, oxidation peak of coke was shifted to a higher temperature, which can be interpreted that coke formed during the reaction wasmainly located on the support in the case of Pt-Sn/ alumina because coke generated onmetal surfaces was readily transferred to the support in the presence of Sn. This would be responsible for high tolerance of Pt-Sn/$Al_{2}O_{3}$ to catalyst deactivation.

Keywords

References

  1. M.M. Bhasin, J.H. McCain, B.V. Vora, T. Imai, P.R. Pujado, Appl. Catal. A 221 (2001) 397. https://doi.org/10.1016/S0926-860X(01)00816-X
  2. D. Sanfilippo, CATTECH 4 (2000) 56. https://doi.org/10.1023/A:1011947328263
  3. M. Guisnet, P. Magnoux, Appl. Catal. A 212 (2001) 83. https://doi.org/10.1016/S0926-860X(00)00845-0
  4. D.D. Eley, H. Pines, P.B. Weisz, Advances in Catalysis, Academic Press, 1973, p. 91.
  5. S.D. Jackson, G.J. Kelly, G. Webb, J. Catal. 176 (1998) 225. https://doi.org/10.1006/jcat.1998.2021
  6. L.C. Loc, N.A. Gaidai, S.L. Kipeman, Proc. IX Internat. Congr. Catal., Calgari, Canada, (1988), p. 1261.
  7. E.L. Jablonski, A.A. Castro, O.A. Scelza, S.R. de Miguel, Appl. Catal. A 183 (1999) 189. https://doi.org/10.1016/S0926-860X(99)00058-7
  8. C. Yu, Q. Ge, H. Xu, W. Li, Catal. Lett. 112 (2006) 197. https://doi.org/10.1007/s10562-006-0203-y
  9. G. Corro, P. Marecot, J. Barbier, C.H. Bartholomew, G.A. Fuentes, Stud. Surf. Sci. Catal. 111 (1997) 359.
  10. S.R.D. Miguel, E.L. Jablonski, A.A. Castro, O.A. Scelza, J. Chem. Technol. Biotechnol. 75 (2000) 596. https://doi.org/10.1002/1097-4660(200007)75:7<596::AID-JCTB251>3.0.CO;2-6
  11. P. Praserthdam, T. Mongkhonsi, S. Kunatippapong, B. Jaikaew, N. Lim, Stud. Surf. Sci. Catal. 111 (1997) 153.
  12. A. Vazquez, T. Lopez, R. Gomez, X. Bokhimi, J. Mol. Catal. A 167 (2001) 91. https://doi.org/10.1016/S1381-1169(00)00495-7
  13. M. Santhosh Kumar, D. Chen, J.C. Walmsley, A. Holmen, Catal. Commun. 9 (2008) 747. https://doi.org/10.1016/j.catcom.2007.08.015
  14. D. Akporiaye, S.F. Jensen, U. Olsbye, F. Rohr, E. Rytter, M. Ronnekleiv, A.I. Spjelkavik, Ind. Eng. Chem. Res. 40 (2001) 4741. https://doi.org/10.1021/ie010299+
  15. D. Hullmann, G. Wendt, U. Singliar, G. Ziegenbalg, Appl. Catal. A 225 (2002) 261. https://doi.org/10.1016/S0926-860X(01)00871-7
  16. J.W. Beeckman, G.F. Froment, Ind. Eng. Chem. Fundam. 18 (1979) 245. https://doi.org/10.1021/i160071a009
  17. J.J. Spivey, S.K. Agarwal, Specialist Periodical Reports: Catalysis, Royal Society of Chemistry, 1994,, p. 379.
  18. R. Burch, J. Catal. 71 (1981) 348. https://doi.org/10.1016/0021-9517(81)90238-4
  19. A. Vazquez-Zavala, A. Ostoa-Montes, D. Acosta, A. Gomez-Cortes, Appl. Surf. Sci. 136 (1998) 62. https://doi.org/10.1016/S0169-4332(98)00318-3
  20. J. Volter, G. Lietz, M. Uhlemann, M. Hermann, J. Catal. 68 (1981) 42. https://doi.org/10.1016/0021-9517(81)90038-5
  21. J. Datka, R.P. Eischens, Stud. Surf. Sci. Catal. 68 (1991) 127.
  22. M. Santhosh Kumar, D. Chen, A. Holmen, J.C.Walmsley, Catal. Today 142 (2009) 17. https://doi.org/10.1016/j.cattod.2009.01.002
  23. S. de Miguel, S. Bocanegra, I. Vilella, A. Guerrero-Ruiz, O. Scelza, Catal. Lett. 119 (2007) 5. https://doi.org/10.1007/s10562-007-9215-5
  24. G.J. Siri, M.L. Casella, G.F. Santori, O.A. Ferretti, Ind. Eng. Chem. Res. 36 (1997) 4821. https://doi.org/10.1021/ie960674b
  25. A.D. Ballarini, C.G. Ricci, S.R. de Miguel, O.A. Scelza, Catal. Today 133-135 (2008) 28. https://doi.org/10.1016/j.cattod.2007.11.055
  26. M.W.T.B.H.S.W. Deng, Adv. Funct. Mater. 13 (2003) 61. https://doi.org/10.1002/adfm.200390007
  27. NIST (National Institute of Standards and Technology) X-ray Photoelectron Spectroscopy database. http://srdata.nist.gov/XPS (accessed March 2009).
  28. J. Margitfalvi, S. Gobolos, E. Talas, M. Hegedos, P. Szedlacsek, Stud. Surf. Sci. Catal. 34 (1987) 147.
  29. C. Yu, Q. Ge, H. Xu, W. Li, Appl. Catal. A 315 (2006) 58. https://doi.org/10.1016/j.apcata.2006.08.038
  30. O.A. Barias, A. Holmen, E.A. Blekkan, J. Catal. 158 (1996) 1. https://doi.org/10.1006/jcat.1996.0001
  31. Y. Wang, Y. Wang, S. Wang, X. Guo, S.-M. Zhang, W.-P. Huang, S. Wu, Catal. Lett. 132 (2009) 472. https://doi.org/10.1007/s10562-009-0119-4
  32. G.T. Baronetti, S.R. de Miguel, O.A. Scelza, A.A. Castro, Appl. Catal. 24 (1986) 109. https://doi.org/10.1016/S0166-9834(00)81261-0
  33. Y.-X. Li, J. Stencel, B. Davis, React. Kinet. Catal. Lett. 37 (1988) 273. https://doi.org/10.1007/BF02062070
  34. D.W. Blakely, G.A. Somorjai, J. Catal. 42 (1976) 181. https://doi.org/10.1016/0021-9517(76)90252-9
  35. L. Guczi, B.S. Gudkov, React. Kinet. Catal. Lett. 9 (1978) 343. https://doi.org/10.1007/BF02070511
  36. B.Coq, A.Goursot, T. Tazi, F. Figueras, D.R. Salahub, J.Am.Chem. Soc.113(1991)1485. https://doi.org/10.1021/ja00005a002
  37. P. Lesage, J.-P. Candy, C. Hirigoyen, F. Humblot, M. Leconte, J.-M. Basset, J. Mol. Catal. A 112 (1996) 303. https://doi.org/10.1016/1381-1169(96)00126-4
  38. A. Virnovskaia, S. Morandi, E. Rytter, G. Ghiotti, U. Olsbye, J. Phys. Chem. C 111 (2007) 14732. https://doi.org/10.1021/jp074686u
  39. D. Espinat, E. Freund, H. Dexpert, G. Martino, J. Catal. 126 (1990) 496. https://doi.org/10.1016/0021-9517(90)90016-D
  40. G.S. Walker, D.R. Pyke, C.R. Werrett, E. Williams, A.K. Bhattacharya, Appl. Surf. Sci. 147 (1999) 228. https://doi.org/10.1016/S0169-4332(99)00118-X
  41. E. Yasuda, M. Ingaki, K. Kaneko, M. Endo, A. Oya, Y. Tanabe, Carbon Alloys: Novel Concepts to Develop Carbon Science and Technology, Elsevier Science, 2003,, p.214.
  42. G.L. Selman, P.J. Ellison, A.S. Darling, Platinum Met. Rev. 14 (1970) 20.
  43. B. Weckhuysen, M. Rosynek, J. Lunsford, Catal. Lett. 52 (1998) 31. https://doi.org/10.1023/A:1019094630691
  44. L. Liwu, Z. Tao, Z. Jingling, X. Zhusheng, Appl. Catal. 67 (1990) 11. https://doi.org/10.1016/S0166-9834(00)84428-0
  45. H. Lieske, A. Sarkany, J. Volter, Appl. Catal. 30 (1987) 69. https://doi.org/10.1016/S0166-9834(00)81012-X

Cited by

  1. Preparation of Pt-Sn-K/Al2O3 Catalysts and its Catalytic Performance in Propane Dehydrogenation vol.560, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/amr.560-561.289
  2. Delivering a Modifying Element to Metal Nanoparticles via Support: Pt–Ga Alloying during the Reduction of Pt/Mg(Al,Ga)Ox Catalysts and Its Effects on Propane Dehydrogenation vol.4, pp.6, 2014, https://doi.org/10.1021/cs500415e
  3. One-step preparation of Pt-Ce and Pt-Sn-Ce/Al2O3 catalysts by flame spray pyrolysis in propane dehydrogenation vol.113, pp.1, 2011, https://doi.org/10.1007/s11144-014-0718-y
  4. Comparing in Situ Carbon Tolerances of Sn-Infiltrated and BaO-Infiltrated Ni-YSZ Cermet Anodes in Solid Oxide Fuel Cells Exposed to Methane vol.119, pp.14, 2011, https://doi.org/10.1021/acs.jpcc.5b01345
  5. Role of Sn in the Regeneration of Pt/γ-Al 2 O 3 Light Alkane Dehydrogenation Catalysts vol.6, pp.4, 2016, https://doi.org/10.1021/acscatal.5b02917
  6. 프로판 탈수소화 반응용 백금촉매의 코크 생성에 미치는 수소비와 주석첨가의 영향 vol.22, pp.2, 2011, https://doi.org/10.7464/ksct.2016.22.2.082
  7. Effect of Tin Coverage on Selectivity for Ethane Dehydrogenation over Platinum–Tin Alloys vol.120, pp.48, 2011, https://doi.org/10.1021/acs.jpcc.6b08407
  8. Effect of Cu promoter and alumina phases on Pt/Al2O3 for propane dehydrogenation vol.34, pp.5, 2011, https://doi.org/10.1007/s11814-017-0020-6
  9. Performance and coke species of HZSM-5 in the isomerization of styrene oxide to phenylacetaldehyde vol.7, pp.70, 2011, https://doi.org/10.1039/c7ra09007b
  10. Highly Active and Stable Pt–Sn/SBA-15 Catalyst Prepared by Direct Reduction for Ethylbenzene Dehydrogenation: Effects of Sn Addition vol.56, pp.25, 2011, https://doi.org/10.1021/acs.iecr.7b01598
  11. Performance of Pt/ZrO2–TiO2–Al2O3 and coke deposition during methylcyclohexane catalytic cracking vol.200, pp.None, 2011, https://doi.org/10.1016/j.fuel.2017.03.058
  12. Coke Formation on Pt-Sn/Al2O3 Catalyst for Propane Dehydrogenation vol.57, pp.26, 2011, https://doi.org/10.1021/acs.iecr.8b01313
  13. High-Purity Hydrogen Generation via Dehydrogenation of Organic Carriers: A Review on the Catalytic Process vol.8, pp.5, 2018, https://doi.org/10.1021/acscatal.7b04278
  14. Tunable Catalytic Performance of Single Pt Atom on Doped Graphene in Direct Dehydrogenation of Propane by Rational Doping: A Density Functional Theory Study vol.122, pp.3, 2011, https://doi.org/10.1021/acs.jpcc.7b09736
  15. Ethane dehydrogenation on pristine and AlOx decorated Pt stepped surfaces vol.8, pp.8, 2018, https://doi.org/10.1039/c8cy00398j
  16. Propane dehydrogenation over supported Pt-Sn nanoparticles vol.367, pp.None, 2011, https://doi.org/10.1016/j.jcat.2018.09.006
  17. The role of H2S addition on Pt/Al2O3 catalyzed propane dehydrogenation: a mechanistic study vol.9, pp.3, 2019, https://doi.org/10.1039/c8cy02393j
  18. Pt-Ir/Al2O3 catalysts for the ring opening of naphthenes. Performance as a function of time vol.127, pp.2, 2011, https://doi.org/10.1007/s11144-019-01605-w
  19. Sn-modification of Pt7/alumina model catalysts: Suppression of carbon deposition and enhanced thermal stability vol.152, pp.2, 2011, https://doi.org/10.1063/1.5129686
  20. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites vol.3, pp.8, 2011, https://doi.org/10.1038/s41929-020-0472-7
  21. Regeneration of Pt-Sn/Al2O3 Catalyst for Hydrogen Production through Propane Dehydrogenation Using Hydrochloric Acid vol.10, pp.8, 2020, https://doi.org/10.3390/catal10080898
  22. Acidic nanomaterials (TiO2, ZrO2, and Al2O3) are coke storage components that reduce the deactivation of the Pt-Sn/γ-Al2O3 catal vol.10, pp.15, 2011, https://doi.org/10.1039/d0cy00735h
  23. One-Step Fabrication of PtSn/γ-Al2O3 Catalysts with La Post-Modification for Propane Dehydrogenation vol.10, pp.9, 2011, https://doi.org/10.3390/catal10091042
  24. Coke Deposition on Pt-Based Catalysts in Propane Direct Dehydrogenation: Kinetics, Suppression, and Elimination vol.11, pp.None, 2011, https://doi.org/10.1021/acscatal.1c00331
  25. The key to catalytic stability on sol–gel derived SnOx/SiO2 catalyst and the comparative study of side reaction with K-PtSn/Al2O3 toward propane dehyd vol.375, pp.None, 2011, https://doi.org/10.1016/j.cattod.2020.05.053
  26. Size effect in propane dehydrogenation on PtIn/Sn-SBA-15 vol.518, pp.None, 2011, https://doi.org/10.1016/j.mcat.2021.112081
  27. Combining bi-functional Pt/USY and electromagnetic induction for rapid in-situ adsorption-combustion cycling of gaseous organic pollutant vol.426, pp.None, 2022, https://doi.org/10.1016/j.jhazmat.2021.128097