DOI QR코드

DOI QR Code

Effects of physicochemical treatments of illite on the thermo-mechanical properties and thermal stability of illite/epoxy composites

  • Jeong, Euig-Yung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lim, Jae-Won (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Seo, Kyeong-Won (Hyochang Corp.) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • Published : 2011.01.25

Abstract

In this study, the effects of physicochemical treatments of illite on thermo-mechanical properties and thermal stability of the hybrid illite/epoxy composites were investigated. Illite was chemically modified with octadecylamine (ODA), to become more organophilic and also physically modified by wet ballmilling process, so that the illite dispersion in the epoxy matrix and interfacial adhesion between illite and epoxy resin could be improved. Then, as-received illite and physically and/or chemically modified illites were mixed with epoxy separately to produce hybrid illite/epoxy composites and their thermomechanical properties and thermal stability were investigated. Chemical modification was confirmed with FTIR and the aforementioned properties of illite/epoxy composites were characterized with SEM, DMA, and TGA. IR results show that ODA modification of illite was successful and thermo-mechanical properties were enhanced with illite introduction to the epoxy resin, especially when physically and chemically modified illite was added, showing about 100% increase in storage and loss modulus, compared to the pure epoxy. However, thermal stability was not enhanced by forming the illite/epoxy composites, because the composites prepared in this study were intercalated and flocculated illite/epoxy microcomposites.

Keywords

References

  1. G.I. Anthoulis, E. Kontou, Polymer 49 (7) (2008) 1934. https://doi.org/10.1016/j.polymer.2008.02.010
  2. Y.L. Liu, C.Y. Hsu, W.L. Wei, R.J. Jeng, Polymer 44 (18) (2003) 5159. https://doi.org/10.1016/S0032-3861(03)00519-6
  3. P. Yang, G. Wang, X. Xia, Y. Takezawa,H. Wang, S. Yamada, Q. Du, W. Zhong, Polym. Eng. Sci. 48 (6) (2008) 1214. https://doi.org/10.1002/pen.21081
  4. S.I. Marras, A. Tsimpliaraki, I. Zuburtikudis, C. Panayiotou, J. Colloid Interf. Sci. 315 (2) (2007) 520. https://doi.org/10.1016/j.jcis.2007.06.023
  5. C.W. Chlu, C.C. Chu, W.T. Cheng, J.J. Lin, Eur. Polym. J. 44 (3) (2008) 628. https://doi.org/10.1016/j.eurpolymj.2007.12.013
  6. G. Khanbabaei, J. Aalaie, A. Rahmatpour, A. Khoshniyat, M.A. Gharabadian, J. Macromol. Sci. B 46 (5) (2007) 975. https://doi.org/10.1080/00222340701457287
  7. S.-J. Park, B.-J. Kim, D.-I. Seo, K.-Y. Rhee, Y.-Y. Lyu, Mater. Sci. Eng. A 526 (2009) 74. https://doi.org/10.1016/j.msea.2009.07.023
  8. L. Wang, K. Wang, L. Chen, Y.W. Zhang, C.B. He, Composites A 37 (8) (2006) 1890. https://doi.org/10.1016/j.compositesa.2005.12.020
  9. J.W. Lim, E. Jeong, K.-W. Seo, Y.-S. Lee, in press.
  10. C.E. Weaver, L.D. Pollard, Chemistry of clay minerals, vol. 15, in: Developments in Sedimentology, Elsevier Science Ltd., 1973.
  11. K. Tamura, S. Yokoyama, C.S. Pascua, H. Yamada, Chem. Mater. 20 (6) (2008) 2242. https://doi.org/10.1021/cm702860m
  12. A. Kriaa, N. Hamdi, E. Srasra, J. Struc. Chem. 50 (2) (2009) 273. https://doi.org/10.1007/s10947-009-0039-6
  13. B. Dubacq, O. Vidal, V. De Andrade, Contrib. Mineral. Petrol. 159 (2) (2010) 159. https://doi.org/10.1007/s00410-009-0421-6
  14. S. Choudhury, C.A. Betty, K.G. Girija, Thin Solid Films 517 (2) (2008) 923. https://doi.org/10.1016/j.tsf.2008.08.183
  15. M. Maiti, S. Sadhu, A.K. Bhowmick, J. Appl. Polym. Sci. 101 (1) (2006) 603. https://doi.org/10.1002/app.23348
  16. S. Sinha Ray, M. Okamoto, Prog. Polym. Sci. 28 (11) (2003) 1539. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  17. D. Ranta, N.R. Manoj, R. Varley, S. Raman, G.P. Simon, Polym. Int. 52 (9) (2003) 1403. https://doi.org/10.1002/pi.1166
  18. D. Curliss, C. Chen, J. Appl. Polym. Sci. 90 (8) (2003) 2276. https://doi.org/10.1002/app.12901
  19. R. Sarathi, R.K. Sahu, P. Rajeshkumar, Mater. Sci. Eng. A 445 (2006) 267.
  20. A. Yasmin, J.J. Luo, J.L. Abot, I.M. Daniel, Compos. Sci. Technol. 66 (14) (2006) 2415. https://doi.org/10.1016/j.compscitech.2006.03.011
  21. E. Kaya, M. Tanoglu, S. Okur, J. Appl. Polym. Sci. 109 (2) (2008) 834. https://doi.org/10.1002/app.28168
  22. D. Dudic, M. Marinovic-Cinovic, J.M. Nedeljkovic, V. Djokovic, Polymer 49 (18) (2008) 4000. https://doi.org/10.1016/j.polymer.2008.07.016
  23. S. Sinha Ray, K. Okamoto, M. Okamoto, Macromolecules 36 (7) (2003) 2355. https://doi.org/10.1021/ma021728y

Cited by

  1. Improved anti-oxidation properties of electrospun polyurethane nanofibers achieved by oxyfluorinated multi-walled carbon nanotubes and aluminum hydroxide vol.126, pp.3, 2011, https://doi.org/10.1016/j.matchemphys.2010.12.061
  2. Direct fluorination as a novel organophilic modification method for the preparation of Illite/polypropylene nanocomposites vol.47, pp.2, 2012, https://doi.org/10.1007/s10853-011-5893-x
  3. 폴리프로필렌 부직포 섬유의 열, 항균 및 원적외선 방사 특성에 미치는 불소화 일라이트 첨가의 영향 vol.37, pp.1, 2011, https://doi.org/10.7317/pk.2013.37.1.86
  4. 불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성 vol.27, pp.3, 2011, https://doi.org/10.14478/ace.2016.1033
  5. Crystallinity, ion conductivity, and thermal and mechanical properties of poly(ethylene oxide)–illite nanocomposites with exfoliated illite as a filler vol.133, pp.47, 2011, https://doi.org/10.1002/app.44226
  6. A Study on Acidification and Intercalation of Illite Clay Minerals and their Potential Use as a Filler in SPEEK Composite Membranes vol.762, pp.None, 2018, https://doi.org/10.4028/www.scientific.net/kem.762.186
  7. The influence of illite on the crystallization and properties of isotactic polypropylene vol.2, pp.2, 2011, https://doi.org/10.1002/pcr2.10051
  8. An application‐oriented roadmap to select polymeric nanocomposites for advanced applications: A review vol.41, pp.4, 2011, https://doi.org/10.1002/pc.25461
  9. Effect of groundwater chemistry and temperature on swelling and microstructural properties of sand-bentonite for barriers of radioactive waste repositories vol.80, pp.2, 2021, https://doi.org/10.1007/s10064-020-02020-5
  10. Study on the Use of CTAB-Treated Illite as an Alternative Filler for Natural Rubber vol.6, pp.29, 2011, https://doi.org/10.1021/acsomega.1c02304