DOI QR코드

DOI QR Code

Current-induced oscillation of a magnetic domain wall: Effect of damping enhanced by magnetization dynamics

Kim, Sang-Il;Moon, Jung-Hwan;Kim, Woojin;Lee, Kyung-Jin

  • Published : 20110100

Abstract

Based on the Thiele's approach, we investigate current-induced oscillation of a magnetic domain wall. A special attention is paid to effect of damping enhancement due to magnetization dynamics in the limit of no spin diffusion. Unlike for a translation motion, the enhanced damping due to magnetization dynamics has an important role for a rotational motion of a magnetic domain wall and can significantly reduce its oscillation frequency. The frequency reduction becomes more substantial for a narrower domain wall. This result provides a design strategy of high-frequency devices utilizing domain wall oscillation.

Keywords

References

  1. J.C. Slonczewski, J. Magn. Magn. Mater. 159 (1996) L1-L7. https://doi.org/10.1016/0304-8853(96)00062-5
  2. L. Berger, Phys. Rev. B. 54 (1996) 9353-9358. https://doi.org/10.1103/PhysRevB.54.9353
  3. S.I. Kiselev, J.C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, D.C. Ralph, Nature 425 (2003) 380-383. https://doi.org/10.1038/nature01967
  4. K.J. Lee, Y. Liu, A. Deac, M. Li, J.W. Chang, S. Liao, K. Ju, O. Redon, J.P. Nozieres, B. Dieny, J. Appl. Phys. 95 (2004) 7423-7428. https://doi.org/10.1063/1.1682872
  5. W.H. Rippard, M.R. Pufall, S. Kaka, S.E. Russek, T.J. Silva, Phys. Rev. Lett. 92 (2004) 027201. https://doi.org/10.1103/PhysRevLett.92.027201
  6. I.N. Krivorotov, N.C. Emley, J.C. Sankey, S.I. Kiselev, D.C. Ralph, R.A. Buhrman, Science 307 (2005) 228-231. https://doi.org/10.1126/science.1105722
  7. K.J. Lee, O. Redon, B. Dieny, Appl. Phys. Lett. 86 (2005) 022505. https://doi.org/10.1063/1.1852081
  8. G. Tatara, H. Kohno, Phys. Rev. Lett. 92 (2004) 086601. https://doi.org/10.1103/PhysRevLett.92.086601
  9. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 92 (2004) 077205. https://doi.org/10.1103/PhysRevLett.92.077205
  10. M. Yamanouchi, D. Chiba, F. Matsukura, H. Ohno, Nature 428 (2004) 539-542. https://doi.org/10.1038/nature02441
  11. M. Klaui, C.A.F. Vaz, J.A.C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, L.J. Heyderman, F. Nolting, U. Rudiger, Phys. Rev. Lett. 94 (2005) 106601. https://doi.org/10.1103/PhysRevLett.94.106601
  12. G. Tatara, H. Kohno, J. Shibata, Y. Lemaho, K.-J. Lee, J. Phys. Soc. Jpn. 76 (2007) 054707. https://doi.org/10.1143/JPSJ.76.054707
  13. G. Tatara, H. Kohno, J. Shibata, Phys. Rep. 468 (2008) 213-301. https://doi.org/10.1016/j.physrep.2008.07.003
  14. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320 (2008) 190-194. https://doi.org/10.1126/science.1145799
  15. P. Lederer, D.L. Mills, Phys. Rev. 148 (1966) 542-547. https://doi.org/10.1103/PhysRev.148.542
  16. Y.B. Bazaliy, B.A. Jones, S.-C. Zhang, Phys. Rev. B. 57 (1998) R3213-R3216. https://doi.org/10.1103/PhysRevB.57.R3213
  17. J. Fernandez-Rossier, M. Braun, A.S. Nunez, A.H. MacDonald, Phys. Rev. B. 69 (2004) 174412. https://doi.org/10.1103/PhysRevB.69.174412
  18. V. Vlaminck, M. Bailleul, Science 322 (2008) 410-413. https://doi.org/10.1126/science.1162843
  19. S.-M. Seo, K.-J. Lee, H. Yang, T. Ono, Phys. Rev. Lett. 102 (2009) 147202. https://doi.org/10.1103/PhysRevLett.102.147202
  20. J. He, S. Zhang, Appl. Phys. Lett. 90 (2007) 142508. https://doi.org/10.1063/1.2719646
  21. M. Franchin, T. Fischbacher, G. Bordignon, P. de Groot, H. Fangohr, Phys. Rev. B. 78 (2008) 054447. https://doi.org/10.1103/PhysRevB.78.054447
  22. A. Bisig, L. Heyne, O. Boulle, M. Kläui, Appl. Phys. Lett. 95 (2009) 162504. https://doi.org/10.1063/1.3238314
  23. K. Matsushita, J. Sato, H. Imamura, J. Appl. Phys. 105 (2009) 07D525. https://doi.org/10.1063/1.3075555
  24. T. Ono, Y. Nakatani, Appl. Phys. Express 1 (2008) 061301. https://doi.org/10.1143/APEX.1.061301
  25. S. Zhang, S.-L. Zhang, Phys. Rev. Lett. 102 (2009) 086601. https://doi.org/10.1103/PhysRevLett.102.086601
  26. Y. Tserkovnyak, C.H. Wong, Phys. Rev. B. 79 (2009) 014402. https://doi.org/10.1103/PhysRevB.79.014402
  27. C.H. Wong, Y. Tserkovnyak, Phys. Rev. B. 81 (2010) 060404 (R). https://doi.org/10.1103/PhysRevB.81.060404
  28. G.E. Volovik, J. Phys. C 20 (1987) L83-L87. https://doi.org/10.1088/0022-3719/20/7/003
  29. A. Stern, Phys. Rev. Lett. 68 (1992) 1022. https://doi.org/10.1103/PhysRevLett.68.1022
  30. S.E. Barnes, S. Maekawa, Phys. Rev. Lett. 98 (2007) 246601. https://doi.org/10.1103/PhysRevLett.98.246601
  31. J.-I. Ohe, A. Takeuchi, G. Tatara, Phys. Rev. Lett. 99 (2007) 266603. https://doi.org/10.1103/PhysRevLett.99.266603
  32. W.M. Saslow, Phys. Rev. B. 76 (2007) 184434. https://doi.org/10.1103/PhysRevB.76.184434
  33. Y. Tserkovnyak, M. Mecklenburg, Phys. Rev. B. 77 (2008) 134407. https://doi.org/10.1103/PhysRevB.77.134407
  34. R.A. Duine, Phys. Rev. B. 77 (2008) 014409. https://doi.org/10.1103/PhysRevB.77.014409
  35. J. Shibata, H. Kohno, Phys. Rev. Lett. 102 (2009) 086603. https://doi.org/10.1103/PhysRevLett.102.086603
  36. S.A. Yang, G.S.D. Beach, C. Knutso, D. Xiao, Q. Niu, M. Tsoi, J.L. Erskine, Phys. Rev. Lett. 102 (2009) 067201; https://doi.org/10.1103/PhysRevLett.102.067201
  37. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, Phys. Rev. Lett. 88 (2002) 117601. https://doi.org/10.1103/PhysRevLett.88.117601
  38. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer, B.I. Halperin, Rev. Mod. Phys. 77 (2005) 1375-1421. https://doi.org/10.1103/RevModPhys.77.1375
  39. A.A. Thiele, Phys. Rev. Lett. 30 (1973) 230-233. https://doi.org/10.1103/PhysRevLett.30.230
  40. S. Zhang, Z. Li, Phys. Rev. Lett. 93 (2004) 127204. https://doi.org/10.1103/PhysRevLett.93.127204
  41. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Europhys. Lett. 69 (2005) 990-996. https://doi.org/10.1209/epl/i2004-10452-6
  42. J. Xiao, A. Zangwill, M.D. Stiles, Phys. Rev. B. 73 (2006) 054428.
  43. L. Heyne, M. Klaui, D. Backes, T.A. Moore, S. Krzyk, U. Rudiger, L.J. Heyderman, A. Fraile Rodriguez, F. Nolting, T.O. Mentes, M. A, A. NinoLocatelli, K. Kirsch, R. Mattheis, Phys. Rev. Lett. 100 (2008) 066603. https://doi.org/10.1103/PhysRevLett.100.066603
  44. C. Burrowes, A.P. Mihai, D. Ravelosona, J.-V. Kim, C. Chappert, L. Vila, A. Marty, Y. Samson, F. Garcia-Sanchez, L.D. Buda-Prejbeanu, I. Tudosa, E.E. Fullerton, J.-P. Attane, Nat. Phys. 6 (2009) 17-21.
  45. J.C. Sankey, Y.-T. Cui, J.Z. Sun, J.C. Slonczewksi, R.A. Buhrman, D.C. Ralph, Nat. Phys. 4 (2008) 67-71. https://doi.org/10.1038/nphys783
  46. H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, D.D. Djayaprawira, N. Watanabe, Y. Suzuki, Nat. Phys. 4 (2008) 37-41. https://doi.org/10.1038/nphys784
  47. S.-C. Oh, S.-Y. Park, A. Manchon, M. Chshiev, J.-H. Han, H.-W. Lee, J.-E. Lee, J.-T. Nam, Y. Jo, Y.-C. Kong, B. Dieny, K.-J. Lee, Nat. Phys. 5 (2009) 898-902. https://doi.org/10.1038/nphys1427
  48. S.W. Jung, W.J. Kim, T.D. Lee, K.J. Lee, H.W. Lee, Appl. Phys. Lett. 92 (2008) 202508. https://doi.org/10.1063/1.2926664
  49. A. Mougin, M. Cormier, J.P. Adam, P.J. Metaxas, J. Ferre, Europhys. Lett. 78 (2007) 57007. https://doi.org/10.1209/0295-5075/78/57007
  50. N.L. Schryer, L.R. Walker, J. Appl. Phys. 45 (1974) 5406-5421. https://doi.org/10.1063/1.1663252
  51. J.-H. Moon, S.-M. Seo, K.-J. Lee, IEEE Trans, Magn. 46 (2010) 2167-2170. https://doi.org/10.1109/TMAG.2010.2041909
  52. J.-G. Zhu, X. Zhu, Y. Tang, IEEE. Trans. Magn. 44 (2008) 125-131. https://doi.org/10.1109/TMAG.2007.911031

Cited by

  1. Effect of spin diffusion on current generated by spin motive force vol.84, pp.5, 2011, https://doi.org/10.1103/physrevb.84.054462
  2. Spin-Motive Force Caused by Vortex Gyration in a Circular Nanodisk with Holes vol.16, pp.1, 2011, https://doi.org/10.4283/jmag.2011.16.1.006
  3. Current-induced domain wall motion in nanoscale ferromagnetic elements vol.72, pp.9, 2011, https://doi.org/10.1016/j.mser.2011.04.001
  4. Micromagnetic modelling on magnetization dynamics in nanopillars driven by spin-transfer torque vol.44, pp.38, 2011, https://doi.org/10.1088/0022-3727/44/38/384001
  5. Decomposition of modified Landau-Lifshitz-Gilbert equation and corresponding analytic solutions vol.86, pp.10, 2011, https://doi.org/10.1103/physrevb.86.104402
  6. Effect of Spin Torque on Magnetization Switching Speed Having Nonuniform Spin Distribution vol.48, pp.11, 2011, https://doi.org/10.1109/tmag.2012.2198913
  7. Improved reliability of Ti/ZrN/Pt resistive switching memory cells using hydrogen postannealing vol.31, pp.4, 2011, https://doi.org/10.1116/1.4813792
  8. Self-consistent calculation of spin transport and magnetization dynamics vol.531, pp.2, 2013, https://doi.org/10.1016/j.physrep.2013.05.006
  9. Proposal for a direct measurement of the nonadiabatic spin-transfer torque parameter $ \beta $ and the spin-polarization rate $ P$ vol.89, pp.5, 2014, https://doi.org/10.1103/physrevb.89.054415
  10. 3전극형 전자종이 디스플레이의 이미지 반전현상에 관한 연구 vol.28, pp.8, 2011, https://doi.org/10.4313/jkem.2015.28.8.524
  11. Anomalous thermal hysteresis of two first order phase transitions in relaxor ferroelectric 0.945 Pb(Zn1/3Nb2/3)O3-0.055PbTiO3crystals studied by Brillouin s vol.119, pp.9, 2011, https://doi.org/10.1063/1.4942858
  12. Influence of nonlocal damping on the field-driven domain wall motion vol.94, pp.6, 2011, https://doi.org/10.1103/physrevb.94.064415
  13. Roles of chiral renormalization on magnetization dynamics in chiral magnets vol.97, pp.10, 2011, https://doi.org/10.1103/physrevb.97.100402