DOI QR코드

DOI QR Code

Stress-Related Alterations of Visceral Sensation: Animal Models for Irritable Bowel Syndrome Study

Larauche, Muriel;Mulak, Agata;Tache Yvette

  • Published : 20110700

Abstract

Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syndrome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models applying a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face validity of experimental models developed with respect to animals' age, sex, strain differences and specific methodological aspects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identification and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitization based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission or stress-related analgesic response.

Keywords

References

  1. Mayer EA, Bradesi S, Chang L, Spiegel BM, Bueller JA, Naliboff BD. Functional GI disorders: from animal models to drug development. Gut 2008;57:384-404. https://doi.org/10.1136/gut.2006.101675
  2. Posserud I, Agerforz P, Ekman R, Bjornsson ES, Abrahamsson H, Simren M. Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut 2004;53:1102-1108. https://doi.org/10.1136/gut.2003.017962
  3. Elsenbruch S, Rosenberger C, Bingel U, Forsting M, Schedlowski M, Gizewski ER. Patients with irritable bowel syndrome have altered emotional modulation of neural responses to visceral stimuli. Gastroenterology 2010;139:1310-1319. https://doi.org/10.1053/j.gastro.2010.06.054
  4. Elsenbruch S, Rosenberger C, Enck P, Forsting M, Schedlowski M, Gizewski ER. Affective disturbances modulate the neural processing of visceral pain stimuli in irritable bowel syndrome: an fMRI study. Gut 2010;59:489-495. https://doi.org/10.1136/gut.2008.175000
  5. Lackner JM, Brasel AM, Quigley BM, et al. The ties that bind: perceived social support, stress, and IBS in severely affected patients. Neurogastroenterol Motil 2010;22:893-900. https://doi.org/10.1111/j.1365-2982.2010.01516.x
  6. Choung RS, Locke GR 3rd, Zinsmeister AR, Schleck CD, Talley NJ. Psychosocial distress and somatic symptoms in community subjects with irritable bowel syndrome: a psychological component is the rule. Am J Gastroenterol 2009;104:1772-1779. https://doi.org/10.1038/ajg.2009.239
  7. Shen L, Kong H, Hou X. Prevalence of irritable bowel syndrome and its relationship with psychological stress status in Chinese university students. J Gastroenterol Hepatol 2009;24:1885-1890. https://doi.org/10.1111/j.1440-1746.2009.05943.x
  8. Blanchard EB, Lackner JM, Jaccard J, et al. The role of stress in symptom exacerbation among IBS patients. J Psychosom Res 2008;64:119-128. https://doi.org/10.1016/j.jpsychores.2007.10.010
  9. Mayer EA, Naliboff BD, Chang L, Coutinho SV. V. Stress and irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2001;280:G519-G524.
  10. Dufton LM, Konik B, Colletti R, et al. Effects of stress on pain threshold and tolerance in children with recurrent abdominal pain. Pain 2008;136:38-43. https://doi.org/10.1016/j.pain.2007.06.012
  11. Chitkara DK, van Tilburg MA, Blois-Martin N, Whitehead WE. Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am J Gastroenterol 2008;103:765-774. https://doi.org/10.1111/j.1572-0241.2007.01722.x
  12. Videlock EJ, Adeyemo M, Licudine A, et al. Childhood trauma is associated with hypothalamic-pituitary-adrenal axis responsiveness in irritable bowel syndrome. Gastroenterology 2009;137:1954-1962. https://doi.org/10.1053/j.gastro.2009.08.058
  13. Leserman J, Drossman DA. Relationship of abuse history to functional gastrointestinal disorders and symptoms: some possible mediating mechanisms. Trauma Violence Abuse 2007;8:331-343. https://doi.org/10.1177/1524838007303240
  14. Gwee KA, Leong YL, Graham C, et al. The role of psychological and biological factors in postinfective gut dysfunction. Gut 1999;44:400-406. https://doi.org/10.1136/gut.44.3.400
  15. Spiller R, Garsed K. Infection, inflammation, and the irritable bowel syndrome. Dig Liver Dis 2009;41:844-849. https://doi.org/10.1016/j.dld.2009.07.007
  16. Mulak A, Bonaz B. Irritable bowel syndrome: a model of the brain-gut interactions. Med Sci Monit 2004;10:RA55-RA62.
  17. Barreau F, Ferrier L, Fioramonti J, Bueno L. New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr Res 2007;62:240-245. https://doi.org/10.1203/PDR.0b013e3180db2949
  18. Qin HY, Wu JC, Tong XD, Sung JJ, Xu HX, Bian ZX. Systematic review of animal models of post-infectious/post-inflammatory irritable bowel syndrome. J Gastroenterol 2011;46:164-174. https://doi.org/10.1007/s00535-010-0321-6
  19. Larauche M, Gourcerol G, Wang L, et al. Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways. Am J Physiol Gastrointest Liver Physiol 2009;297:G215-G227. https://doi.org/10.1152/ajpgi.00072.2009
  20. Yarushkina NI. The role of hypothalamo-hypophyseal-adrenocortical system hormones in controlling pain sensitivity. Neurosci Behav Physiol 2008;38:759-766. https://doi.org/10.1007/s11055-008-9044-z
  21. Coffin B, Bouhassira D, Sabate JM, Barbe L, Jian R. Alteration of the spinal modulation of nociceptive processing in patients with irritable bowel syndrome. Gut 2004;53:1465-1470. https://doi.org/10.1136/gut.2003.031310
  22. Naliboff BD, Mayer EA. Brain imaging in IBS: drawing the line between cognitive and non-cognitive processes. Gastroenterology 2006;130:267-270. https://doi.org/10.1053/j.gastro.2005.11.034
  23. Mayer EA, Naliboff BD, Craig AD. Neuroimaging of the brain-gut axis: from basic understanding to treatment of functional GI disorders. Gastroenterology 2006;131:1925-1942. https://doi.org/10.1053/j.gastro.2006.10.026
  24. Lanteri-Minet M, Isnardon P, de PJ, Menetrey D. Spinal and hindbrain structures involved in visceroception and visceronociception as revealed by the expression of Fos, Jun and Krox-24 proteins. Neuroscience 1993;55:737-753. https://doi.org/10.1016/0306-4522(93)90439-M
  25. Wang L, Martinez V, Larauche M, Tache Y. Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRFand catecholamines-containing neurons in rat brain. Brain Res 2009;1247:79-91.
  26. Martinez V, Wang L, Tache Y. Proximal colon distension induces Fos expression in the brain and inhibits gastric emptying through capsaicin-sensitive pathways in conscious rats. Brain Res 2006;1086:168-180. https://doi.org/10.1016/j.brainres.2006.02.063
  27. Monnikes H, Ruter J, Konig M, et al. Differential induction of c-fos expression in brain nuclei by noxious and non-noxious colonic distension: role of afferent C-fibers and 5-$HT_3$ receptors. Brain Res 2003;966:253-264. https://doi.org/10.1016/S0006-8993(02)04197-5
  28. Murphy AZ, Suckow SK, Johns M, Traub RJ. Sex differences in the activation of the spinoparabrachial circuit by visceral pain. Physiol Behav 2009;97:205-212. https://doi.org/10.1016/j.physbeh.2009.02.037
  29. Wu JC, Ziea ET, LAo L, et al. Effect of electroacupuncture on visceral hyperalgesia, serotonin and fos expression in an animal model of irritable bowel syndrome. J Neurogastroenterol Motil 2010;16:306-314. https://doi.org/10.5056/jnm.2010.16.3.306
  30. Stam R, Ekkelenkamp K, Frankhuijzen AC, Bruijnzeel AW, Akkermans LM, Wiegant VM. Long-lasting changes in central nervous system responsivity to colonic distention after stress in rats. Gastroenterology 2002;123:1216-1225. https://doi.org/10.1053/gast.2002.36029
  31. Traub RJ, Silva E, Gebhart GF, Solodkin A. Noxious colorectal distention induced-c-Fos protein in limbic brain structures in the rat. Neurosci Lett 1996;215:165-168. https://doi.org/10.1016/0304-3940(96)12978-5
  32. Lazovic J, Wizos HF, Yang QX, et al. Regional activation in the rat brain during visceral stimulation detected by c-fos expression and fMRI. Neurogastroenterol Motil 2005;17:548-556. https://doi.org/10.1111/j.1365-2982.2005.00655.x
  33. Wang Z, Bradesi S, Maarek JM, et al. Regional brain activation in conscious, nonrestrained rats in response to noxious visceral stimulation. Pain 2008;138:233-243. https://doi.org/10.1016/j.pain.2008.04.018
  34. Selye H. A syndrome produced by diverse nocuous agents. Nature 1936;138:32.
  35. Cannon WB. Bodily Changes in Pain, Hunger, Fear and Rage: an account of recent researches into the function of emotional excitement. New York and London: D. Appleton and company 1915:311.
  36. Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol 2009;5:374-381. https://doi.org/10.1038/nrendo.2009.106
  37. McEwen BS. Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 1998;840:33-44. https://doi.org/10.1111/j.1749-6632.1998.tb09546.x
  38. Sterling P, Eyer J. Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, ed. Handbook of life stress, cognition and health. Oxford: John Wiley & Sons 1988:629-649.
  39. McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med 1993;153:2093-2101. https://doi.org/10.1001/archinte.1993.00410180039004
  40. Stengel A, Tache Y. Corticotropin-releasing factor signaling and visceral response to stress. Exp Biol Med (Maywood) 2010;235:1168-1178. https://doi.org/10.1258/ebm.2010.009347
  41. Hauger RL, Grigoriadis DE, Dallman MF, Plotsky PM, Vale WW, Dautzenberg FM. International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. Pharmacol Rev 2003;55:21-26. https://doi.org/10.1124/pr.55.1.3
  42. Zorrilla EP, Koob GF. Progress in corticotropin-releasing factor-1 antagonist development. Drug Discov Today 2010;15:371-383. https://doi.org/10.1016/j.drudis.2010.02.011
  43. Rivier CL, Grigoriadis DE, Rivier JE. Role of corticotropin- releasing factor receptors type 1 and 2 in modulating the rat adrenocorticotropin response to stressors. Endocrinology 2003;144:2396-2403. https://doi.org/10.1210/en.2002-0117
  44. Koob GF, Heinrichs SC. A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res 1999;848:141-152. https://doi.org/10.1016/S0006-8993(99)01991-5
  45. Bale TL, Vale WW. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004;44:525-557. https://doi.org/10.1146/annurev.pharmtox.44.101802.121410
  46. Turnbull AV, Rivier C. Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc Soc Exp Biol Med 1997;215:1-10.
  47. Tache Y, Martinez V, Million M, Wang L. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors. Am J Physiol Gastrointest Liver Physiol 2001;280:G173-G177.
  48. Caso JR, Leza JC, Menchen L. The effects of physical and psychological stress on the gastro-intestinal tract: lessons from animal models. Curr Mol Med 2008;8:299-312. https://doi.org/10.2174/156652408784533751
  49. Friedman EM, Irwin MR. A role for CRH and the sympathetic nervous system in stress-induced immunosuppression. Ann N Y Acad Sci 1995;771:396-418. https://doi.org/10.1111/j.1749-6632.1995.tb44698.x
  50. Yorimitsu M, Okada S, Yamaguchi-Shima N, Shimizu T, Arai J, Yokotani K. Role of brain adrenoceptors in the corticortopin-releasing factor-induced central activation of sympatho-adrenomedullary outflow in rats. Life Sci 2008;82:487-494. https://doi.org/10.1016/j.lfs.2007.12.006
  51. Usui D, Yamaguchi-Shima N, Okada S, Shimizu T, Wakiguchi H, Yokotani K. Selective activation of the sympathetic ganglia by centrally administered corticotropin-releasing factor in rats. Auton Neurosci 2009;146:111-114. https://doi.org/10.1016/j.autneu.2008.12.008
  52. Tsatsanis C, Dermitzaki E, Venihaki M, et al. The corticotropin- releasing factor (CRF) family of peptides as local modulators of adrenal function. Cell Mol Life Sci 2007;64:1638-1655. https://doi.org/10.1007/s00018-007-6555-7
  53. Valentino RJ, Foote SL, Page ME. The locus coeruleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann N Y Acad Sci 1993;697:173-188. https://doi.org/10.1111/j.1749-6632.1993.tb49931.x
  54. Kosoyan HP, Wei JY, Tache Y. Intracisternal sauvagine is more potent than corticotropin-releasing factor to decrease gastric vagal efferent activity in rats. Peptides 1999;20:851-858. https://doi.org/10.1016/S0196-9781(99)00072-8
  55. Wiersma A, Bohus B, Koolhaas JM. Corticotropin-releasing hormone microinfusion in the central amygdala diminishes a cardiac parasympathetic outflow under stress-free conditions. Brain Res 1993;625:219-227. https://doi.org/10.1016/0006-8993(93)91062-W
  56. Friedman EM, Irwin MR. Modulation of immune cell function by the autonomic nervous system. Pharmacol Ther 1997;74:27-38. https://doi.org/10.1016/S0163-7258(96)00200-8
  57. Tache Y. The parasympathetic nervous system in the pathophysiology of the gastrointestinal tract. In: Bolis CL, Licinio J, Govoni S, eds. Handbook of autonomic nervous system in health and diseases. Chapter 15. New York: Marcel Dekker, Inc. 2002;463-503.
  58. Holsboer F, Ising M. Central CRH system in depression and anxiety - evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 2008;583:350-357. https://doi.org/10.1016/j.ejphar.2007.12.032
  59. Fukudo S. Role of corticotropin-releasing hormone in irritable bowel syndrome and intestinal inflammation. J Gastroenterol 2007;42(suppl 17):48-51.
  60. Tache Y, Brunnhuber S. From Hans Selye's discovery of biological stress to the identification of corticotropin-releasing factor signaling pathways: implication in stress-related functional bowel diseases. Ann N Y Acad Sci 2008;1148:29-41. https://doi.org/10.1196/annals.1410.007
  61. Million M, Maillot C, Adelson DA, et al. Peripheral injection of sauvagine prevents repeated colorectal distension-induced visceral pain in female rats. Peptides 2005;26:1188-1195. https://doi.org/10.1016/j.peptides.2005.02.004
  62. Million M, Wang L, Wang Y, et al. CRF2 receptor activation prevents colorectal distension induced visceral pain and spinal ERK1/2 phosphorylation in rats. Gut 2006;55:172-181. https://doi.org/10.1136/gut.2004.051391
  63. Skorzewska A, Lehner M, Hamed A, et al. The effect of CRF2 receptor antagonists on rat conditioned fear responses and c-Fos and CRF expression in the brain limbic structures. Behav Brain Res 2011;221:155-165. https://doi.org/10.1016/j.bbr.2011.02.036
  64. Larauche M, Kiank C, Tache Y. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications. J Physiol Pharmacol 2009;60(suppl 7):33-46.
  65. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009;139:267-284. https://doi.org/10.1016/j.cell.2009.09.028
  66. Sengupta JN. Visceral pain: the neurophysiological mechanism. Handb Exp Pharmacol 2009;194:31-74.
  67. Robinson DR, Gebhart GF. Inside information: the unique features of visceral sensation. Mol Interv 2008;8:242-253. https://doi.org/10.1124/mi.8.5.9
  68. Grundy D. Neuroanatomy of visceral nociception: vagal and splanchnic afferent. Gut 2002;51(suppl 1):i2-i5.
  69. Blackshaw LA, Brookes SJ, Grundy D, Schemann M. Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 2007;19:1-19.
  70. Ness TJ, Fillingim RB, Randich A, Backensto EM, Faught E. Low intensity vagal nerve stimulation lowers human thermal pain thresholds. Pain 2000;86:81-85. https://doi.org/10.1016/S0304-3959(00)00237-2
  71. Randich A, Gebhart GF. Vagal afferent modulation of nociception. Brain Res Brain Res Rev 1992;17:77-99. https://doi.org/10.1016/0165-0173(92)90009-B
  72. Sugiura Y, Terui N, Hosoya Y, Tonosaki Y, Nishiyama K, Honda T. Quantitative analysis of central terminal projections of visceral and somatic unmyelinated (C) primary afferent fibers in the guinea pig. J Comp Neurol 1993;332:315-325. https://doi.org/10.1002/cne.903320305
  73. Wang G, Tang B, Traub RJ. Differential processing of noxious colonic input by thoracolumbar and lumbosacral dorsal horn neurons in the rat. J Neurophysiol 2005;94:3788-3794. https://doi.org/10.1152/jn.00230.2005
  74. Price DD. Central neural mechanisms that interrelate sensory and affective dimensions of pain. Mol Interv 2002;2:392-403, 339. https://doi.org/10.1124/mi.2.6.392
  75. Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res Rev 2009;60:214-225. https://doi.org/10.1016/j.brainresrev.2008.12.009
  76. Tsuruoka M, Wang D, Tamaki J, Inoue T. Descending influence from the nucleus locus coeruleus/subcoeruleus on visceral nociceptive transmission in the rat spinal cord. Neuroscience 2010;165:1019-1024. https://doi.org/10.1016/j.neuroscience.2009.11.055
  77. Zhuo M, Gebhart GF. Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat. Gastroenterology 2002;122:1007-1019. https://doi.org/10.1053/gast.2002.32389
  78. Ness TJ, Gebhart GF. Colorectal distension as a noxious visceral stimulus: physiologic and pharmacologic characterization of pseudoaffective reflexes in the rat. Brain Res 1988;450:153-169. https://doi.org/10.1016/0006-8993(88)91555-7
  79. Christianson JA, Gebhart GF. Assessment of colon sensitivity by luminal distension in mice. Nat Protoc 2007;2:2624-2631. https://doi.org/10.1038/nprot.2007.392
  80. Larsson M, Arvidsson S, Ekman C, Bayati A. A model for chronic quantitative studies of colorectal sensitivity using balloon distension in conscious mice-effects of opioid receptor agonists. Neurogastroenterol Motil 2003;15:371-381. https://doi.org/10.1046/j.1365-2982.2003.00418.x
  81. Bradesi S, Schwetz I, Ennes HS, et al. Repeated exposure to water avoidance stress in rats: a new model for sustained visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 2005;289:G42-G53. https://doi.org/10.1152/ajpgi.00500.2004
  82. Welting O, Van Den Wijngaard RM, De Jonge WJ, Holman R, Boeckxstaens GE. Assessment of visceral sensitivity using radio telemetry in a rat model of maternal separation. Neurogastroenterol Motil 2005;17:838-845. https://doi.org/10.1111/j.1365-2982.2005.00677.x
  83. Nijsen MJ, Ongenae NG, Coulie B, Meulemans AL. Telemetric animal model to evaluate visceral pain in the freely moving rat. Pain 2003;105:115-123. https://doi.org/10.1016/S0304-3959(03)00170-2
  84. Klueh U, Kreutzer DL. Murine model of implantable glucose sensors: a novel model for glucose sensor development. Diabetes Technol Ther 2005;7:727-737. https://doi.org/10.1089/dia.2005.7.727
  85. Marois Y, Roy R, Vidovszky T, et al. Histopathological and immunological investigations of synthetic fibres and structures used in three prosthetic anterior cruciate ligaments: in vivo study in the rat. Biomaterials 1993;14:255-262. https://doi.org/10.1016/0142-9612(93)90115-I
  86. Arvidsson S, Larsson M, Larsson H, Lindstrom E, Martinez V. Assessment of visceral pain-related pseudo-affective responses to colorectal distension in mice by intracolonic manometric recordings. J Pain 2006;7:108-118. https://doi.org/10.1016/j.jpain.2005.09.003
  87. Tammpere A, Brusberg M, Axenborg J, Hirsch I, Larsson H, Lindstrom E. Evaluation of pseudo-affective responses to noxious colorectal distension in rats by manometric recordings. Pain 2005;116:220-226. https://doi.org/10.1016/j.pain.2005.04.012
  88. Larauche M, Gourcerol G, Million M, Adelson DW, Taché Y. Repeated psychological stress-induced alterations of visceral sensitivity and colonic motor functions in mice: Influence of surgery and postoperative single housing on visceromotor responses. Stress 2010;13:343-354.
  89. Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 2000;119:1276-1285. https://doi.org/10.1053/gast.2000.19576
  90. Zhang XJ, Li Z, Chung EK, et al. Activation of extracellular signal-regulated protein kinase is associated with colorectal distension-induced spinal and supraspinal neuronal response and neonatal maternal separation-induced visceral hyperalgesia in rats. J Mol Neurosci 2009;37:274-287. https://doi.org/10.1007/s12031-008-9134-y
  91. Gibney SM, Gosselin RD, Dinan TG, Cryan JF. Colorectal distension-induced prefrontal cortex activation in the Wistar-Kyoto rat: implications for irritable bowel syndrome. Neuroscience 2010;165:675-683. https://doi.org/10.1016/j.neuroscience.2009.08.076
  92. Ait-Belgnaoui A, Eutamene H, Houdeau E, Bueno L, Fioramonti J, Theodorou V. Lactobacillus farciminis treatment attenuates stressinduced overexpression of Fos protein in spinal and supraspinal sites after colorectal distension in rats. Neurogastroenterol Motil 2009;21:567-569. https://doi.org/10.1111/j.1365-2982.2009.01280.x
  93. Johnson AC, Myers B, Lazovic J, Towner R, Greenwood-Van Meerveld B. Brain activation in response to visceral stimulation in rats with amygdala implants of corticosterone: an FMRI study. PLoS One 2010;5:e8573. https://doi.org/10.1371/journal.pone.0008573
  94. Coello C, Hjornevik T, Courivaud F, Willoch F. Anatomical standardization of small animal brain FDG-PET images using synthetic functional template: Experimental comparison with anatomical template. J Neurosci Methods 2011;199:166-172. https://doi.org/10.1016/j.jneumeth.2011.04.026
  95. Sawchenko PE, Li HY, Ericsson A. Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog Brain Res 2000;122:61-78.
  96. Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997;20:78-84. https://doi.org/10.1016/S0166-2236(96)10069-2
  97. Mayer EA, Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology 2002;122:2032-2048. https://doi.org/10.1053/gast.2002.33584
  98. Rosenberger C, Elsenbruch S, Scholle A, et al. Effects of psychological stress on the cerebral processing of visceral stimuli in healthy women. Neurogastroenterol Motil 2009;21:740-e45. https://doi.org/10.1111/j.1365-2982.2009.01295.x
  99. Elsenbruch S. Abdominal pain in irritable bowel syndrome: a review of putative psychological, neural and neuro-immune mechanisms. Brain Behav Immun 2011;25:386-394. https://doi.org/10.1016/j.bbi.2010.11.010
  100. Bouin M, Plourde V, Boivin M, et al. Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology 2002;122:1771-1777. https://doi.org/10.1053/gast.2002.33601
  101. Hotoleanu C, Popp R, Trifa AP, Nedelcu L, Dumitrascu DL. Genetic determination of irritable bowel syndrome. World J Gastroenterol 2008;14:6636-6640. https://doi.org/10.3748/wjg.14.6636
  102. Camilleri M. Genetics and irritable bowel syndrome: from genomics to intermediate phenotype and pharmacogenetics. Dig Dis Sci 2009;54:2318-2324. https://doi.org/10.1007/s10620-009-0903-4
  103. Zucchelli M, Camilleri M, Nixon Andreasson A, et al. Association of TNFSF15 polymorphism with irritable bowel syndrome. Gut Published Online First: 2 June 2011. doi:10.1136/gut.2011.241877
  104. Markoutsaki T, Karantanos T, Gazouli M, Anagnou NP, Ladas SD, Karamanolis DG. Serotonin transporter and G protein beta 3 subunit gene polymorphisms in Greeks with irritable bowel syndrome. Dig Dis Sci Published Online First: 11 May 2011. doi:10.1007/s10620-011-1726-7
  105. Vazquez-Roque MI, Camilleri M, Carlson P, et al. HLA-DQ genotype is associated with accelerated small bowel transit in patients with diarrhea-predominant irritable bowel syndrome. Eur J Gastroenterol Hepatol 2011;23:481-487. https://doi.org/10.1097/MEG.0b013e328346a56e
  106. Dinan TG, Cryan J, Shanahan F, Keeling PW, Quigley EM. IBS: An epigenetic perspective. Nat Rev Gastroenterol Hepatol 2010;7:465-471. https://doi.org/10.1038/nrgastro.2010.99
  107. Wu HH, Wang S. Strain differences in the chronic mild stress animal model of depression. Behav Brain Res 2010;213:94-102. https://doi.org/10.1016/j.bbr.2010.04.041
  108. Porterfield VM, Zimomra ZR, Caldwell EA, Camp RM, Gabella KM, Johnson JD. Rat strain differences in restraint stress-induced brain cytokines. Neuroscience 2011;188:48-54.
  109. O'Mahony CM, Clarke G, Gibney S, Dinan TG, Cryan JF. Strain differences in the neurochemical response to chronic restraint stress in the rat: relevance to depression. Pharmacol Biochem Behav 2011;97:690-699. https://doi.org/10.1016/j.pbb.2010.11.012
  110. Shepard JD, Myers DA. Strain differences in anxiety-like behavior: association with corticotropin-releasing factor. Behav Brain Res 2008;186:239-245. https://doi.org/10.1016/j.bbr.2007.08.013
  111. Gunter WD, Shepard JD, Foreman RD, Myers DA, Greenwood- Van Meerveld B. Evidence for visceral hypersensitivity in high-anxiety rats. Physiol Behav 2000;69:379-382. https://doi.org/10.1016/S0031-9384(99)00254-1
  112. Meaney MJ, Szyf M, Seckl JR. Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med 2007;13:269-277. https://doi.org/10.1016/j.molmed.2007.05.003
  113. Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004;558:263-275. https://doi.org/10.1113/jphysiol.2004.063388
  114. O'Mahony SM, Hyland NP, Dinan TG, Cryan JF. Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology (Berl) 2011;214:71-88. https://doi.org/10.1007/s00213-010-2010-9
  115. Rosztoczy A, Fioramonti J, Jarmay K, Barreau F, Wittmann T, Bueno L. Influence of sex and experimental protocol on the effect of maternal deprivation on rectal sensitivity to distension in the adult rat. Neurogastroenterol Motil 2003;15:679-686. https://doi.org/10.1046/j.1350-1925.2003.00451.x
  116. Plotsky PM, Meaney MJ. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res Mol Brain Res 1993;18:195-200. https://doi.org/10.1016/0169-328X(93)90189-V
  117. Coutinho SV, Plotsky PM, Sablad M, et al. Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol 2002;282:G307-G316.
  118. Barreau F, Cartier C, Ferrier L, Fioramonti J, Bueno L. Nerve growth factor mediates alterations of colonic sensitivity and mucosal barrier induced by neonatal stress in rats. Gastroenterology 2004;127:524-534. https://doi.org/10.1053/j.gastro.2004.05.019
  119. Lin C, Al-Chaer ED. Long-term sensitization of primary afferents in adult rats exposed to neonatal colon pain. Brain Res 2003;971:73-82. https://doi.org/10.1016/S0006-8993(03)02358-8
  120. Wang G, Ji Y, Lidow MS, Traub RJ. Neonatal hind paw injury alters processing of visceral and somatic nociceptive stimuli in the adult rat. J Pain 2004;5:440-449. https://doi.org/10.1016/j.jpain.2004.07.003
  121. LaPrairie JL, Murphy AZ. Long-term impact of neonatal injury in male and female rats: Sex differences, mechanisms and clinical implications. Front Neuroendocrinol 2010;31:193-202. https://doi.org/10.1016/j.yfrne.2010.02.001
  122. LaPrairie JL, Murphy AZ. Neonatal injury alters adult pain sensitivity by increasing opioid tone in the periaqueductal gray. Front Behav Neurosci 2009;3:31.
  123. Bonaz B, Tache Y. Water-avoidance stress-induced c-fos expression in the rat brain and stimulation of fecal output: role of corticotropin-releasing factor. Brain Res 1994;641:21-28. https://doi.org/10.1016/0006-8993(94)91810-4
  124. Enck P, Merlin V, Erckenbrecht JF, Wienbeck M. Stress effects on gastrointestinal transit in the rat. Gut 1989;30:455-459. https://doi.org/10.1136/gut.30.4.455
  125. Eutamene H, Bradesi S, Larauche M, et al. Guanylate cyclase C-mediated antinociceptive effects of linaclotide in rodent models of visceral pain. Neurogastroenterol Motil 2010;22:312-e84. https://doi.org/10.1111/j.1365-2982.2009.01385.x
  126. Schwetz I, Bradesi S, McRoberts JA, et al. Delayed stress-induced colonic hypersensitivity in male Wistar rats: role of neurokinin-1 and corticotropin-releasing factor-1 receptors. Am J Physiol Gastrointest Liver Physiol 2004;286:G683-G691. https://doi.org/10.1152/ajpgi.00358.2003
  127. Gue M, Del Rio-Lacheze C, Eutamene H, Theodorou V, Fioramonti J, Bueno L. Stress-induced visceral hypersensitivity to rectal distension in rats: role of CRF and mast cells. Neurogastroenterol Motil 1997;9:271-279. https://doi.org/10.1046/j.1365-2982.1997.d01-63.x
  128. Chang L. Review article: epidemiology and quality of life in functional gastrointestinal disorders. Aliment Pharmacol Ther 2004;20(suppl 7):31-39.
  129. Bennett EJ, Tennant CC, Piesse C, Badcock CA, Kellow JE. Level of chronic life stress predicts clinical outcome in irritable bowel syndrome. Gut 1998;43:256-261. https://doi.org/10.1136/gut.43.2.256
  130. Hong S, Fan J, Kemmerer ES, Evans S, Li Y, Wiley JW. Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut 2009;58:202-210. https://doi.org/10.1136/gut.2008.157594
  131. Larauche M, Bradesi S, Million M, et al. Corticotropin-releasing factor type 1 receptors mediate the visceral hyperalgesia induced by repeated psychological stress in rats. Am J Physiol Gastrointest Liver Physiol 2008;294:G1033-G1040. https://doi.org/10.1152/ajpgi.00507.2007
  132. Larauche M, Mulak A, Kim YS, Million M, Taché Y. Sex differences in visceral sensitivity induced by repeated psychological stress in rats: differential role of opioid pathway. Gut 2010;59:A104.
  133. Larauche M, Mulak A, Yuan P-Q, Kanauchi O, Tache Y. Stress-induced visceral analgesia assessed non-invasively in rats is enhanced by prebiotic. World J Gastroenterol 2011 (In press)
  134. Green PG, Alvarez P, Gear RW, Mendoza D, Levine JD. Further validation of a model of fibromyalgia syndrome in the rat. J Pain Published Online First: 8 Apr 2011. doi:10.1016/j.jpain.2011.01.006
  135. Zheng J, Babygirija R, Bulbul M, Cerjak D, Ludwig K, Takahashi T. Hypothalamic oxytocin mediates adaptation mechanism against chronic stress in rats. Am J Physiol Gastrointest Liver Physiol 2010;299:G946-G953. https://doi.org/10.1152/ajpgi.00483.2009
  136. Patel S, Hillard CJ. Adaptations in endocannabinoid signaling in response to repeated homotypic stress: a novel mechanism for stress habituation. Eur J Neurosci 2008;27:2821-2829. https://doi.org/10.1111/j.1460-9568.2008.06266.x
  137. Winston JH, Xu GY, Sarna SK. Adrenergic stimulation mediates visceral hypersensitivity to colorectal distension following heterotypic chronic stress. Gastroenterology 2010;138:294-304. https://doi.org/10.1053/j.gastro.2009.09.054
  138. Savas LS, White DL, Wieman M, et al. Irritable bowel syndrome and dyspepsia among women veterans: prevalence and association with psychological distress. Aliment Pharmacol Ther 2009;29:115-125. https://doi.org/10.1111/j.1365-2036.2008.03847.x
  139. White DL, Savas LS, Daci K, et al. Trauma history and risk of the irritable bowel syndrome in women veterans. Aliment Pharmacol Ther 2010;32:551-561. https://doi.org/10.1111/j.1365-2036.2010.04387.x
  140. Cohen H, Jotkowitz A, Buskila D, et al. Post-traumatic stress disorder and other co-morbidities in a sample population of patients with irritable bowel syndrome. Eur J Intern Med 2006;17:567-571. https://doi.org/10.1016/j.ejim.2006.07.011
  141. Irwin C, Falsetti SA, Lydiard RB, Ballenger JC, Brock CD, Brener W. Comorbidity of posttraumatic stress disorder and irritable bowel syndrome. J Clin Psychiatry 1996;57:576-578. https://doi.org/10.4088/JCP.v57n1204
  142. Drossman DA, Leserman J, Nachman G, et al. Sexual and physical abuse in women with functional or organic gastrointestinal disorders. Ann Intern Med 1990;113:828-833. https://doi.org/10.7326/0003-4819-113-11-828
  143. Klooker TK, Braak B, Painter RC, et al. Exposure to severe wartime conditions in early life is associated with an increased risk of irritable bowel syndrome: a population-based cohort study. Am J Gastroenterol 2009;104:2250-2256. https://doi.org/10.1038/ajg.2009.282
  144. Yehuda R, Schmeidler J, Labinsky E, et al. Ten-year follow-up study of PTSD diagnosis, symptom severity and psychosocial indices in aging holocaust survivors. Acta Psychiatr Scand 2009;119:25-34. https://doi.org/10.1111/j.1600-0447.2008.01248.x
  145. Stam R, Akkermans LM, Wiegant VM. Trauma and the gut: interactions between stressful experience and intestinal function. Gut 1997;40:704-709. https://doi.org/10.1136/gut.40.6.704
  146. Stam R. PTSD and stress sensitisation: a tale of brain and body Part 2: animal models. Neurosci Biobehav Rev 2007;31:558-584. https://doi.org/10.1016/j.neubiorev.2007.01.001
  147. Wang W, Liu Y, Zheng H, et al. A modified single-prolonged stress model for post-traumatic stress disorder. Neurosci Lett 2008;441:237-241. https://doi.org/10.1016/j.neulet.2008.06.031
  148. Rau V, DeCola JP, Fanselow MS. Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neurosci Biobehav Rev 2005;29:1207-1223. https://doi.org/10.1016/j.neubiorev.2005.04.010
  149. Stam R, van Laar TJ, Akkermans LM, Wiegant VM. Variability factors in the expression of stress-induced behavioural sensitisation. Behav Brain Res 2002;132:69-76. https://doi.org/10.1016/S0166-4328(01)00387-4
  150. Collins SM, Vallance B, Barbara G, Borgaonkar M. Putative inflammatory and immunological mechanisms in functional bowel disorders. Baillieres Best Pract Res Clin Gastroenterol 1999;13:429-436. https://doi.org/10.1053/bega.1999.0037
  151. Spiller RC. Postinfectious irritable bowel syndrome. Gastroenterology 2003;124:1662-1671. https://doi.org/10.1016/S0016-5085(03)00324-X
  152. Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology 2009;136:1979-1988. https://doi.org/10.1053/j.gastro.2009.02.074
  153. Long Y, Liu Y, Tong J, Qian W, Hou X. Effectiveness of trimebutine maleate on modulating intestinal hypercontractility in a mouse model of postinfectious irritable bowel syndrome. Eur J Pharmacol 2010;636:159-165. https://doi.org/10.1016/j.ejphar.2010.03.037
  154. Bercik P, Wang L, Verdu EF, et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology 2004;127:179-187. https://doi.org/10.1053/j.gastro.2004.04.006
  155. McLean PG, Picard C, Garcia-Villar R, More J, Fioramonti J, Bueno L. Effects of nematode infection on sensitivity to intestinal distension: role of tachykinin NK2 receptors. Eur J Pharmacol 1997;337:279-282. https://doi.org/10.1016/S0014-2999(97)01275-2
  156. Vergnolle N. Postinflammatory visceral sensitivity and pain mechanisms. Neurogastroenterol Motil 2008;20(suppl 1):73-80.
  157. Keohane J, O'Mahony C, O'Mahony L, O'Mahony S, Quigley EM, Shanahan F. Irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease: a real association or reflection of occult inflammation? Am J Gastroenterol 2010;105:1788, 1789-1794.
  158. Long MD, Drossman DA. Inflammatory bowel disease, irritable bowel syndrome, or what?: a challenge to the functional-organic dichotomy. Am J Gastroenterol 2010;105:1796-1798. https://doi.org/10.1038/ajg.2010.162
  159. Van Hoboken EA, Thijssen AY, Verhaaren R, et al. Symptoms in patients with ulcerative colitis in remission are associated with visceral hypersensitivity and mast cell activity. Scand J Gastroenterol Published Online First: 30 May 2011. doi:10.3109/00365521. 2011.579156
  160. Burton MB, Gebhart GF. Effects of intracolonic acetic acid on responses to colorectal distension in the rat. Brain Res 1995;672:77-82. https://doi.org/10.1016/0006-8993(94)01382-R
  161. Palecek J, Willis WD. The dorsal column pathway facilitates visceromotor responses to colorectal distention after colon inflammation in rats. Pain 2003;104:501-507. https://doi.org/10.1016/S0304-3959(03)00075-7
  162. Ji Y, Tang B, Traub RJ. Modulatory effects of estrogen and progesterone on colorectal hyperalgesia in the rat. Pain 2005;117:433-442. https://doi.org/10.1016/j.pain.2005.07.011
  163. Traub RJ, Murphy A. Colonic inflammation induces fos expression in the thoracolumbar spinal cord increasing activity in the spinoparabrachial pathway. Pain 2002;95:93-102. https://doi.org/10.1016/S0304-3959(01)00381-5
  164. Coutinho SV, Meller ST, Gebhart GF. Intracolonic zymosan produces visceral hyperalgesia in the rat that is mediated by spinal NMDA and non-NMDA receptors. Brain Res 1996;736:7-15. https://doi.org/10.1016/0006-8993(96)00661-0
  165. Gschossmann JM, Liebregts T, Adam B, et al. Long-term effects of transient chemically induced colitis on the visceromotor response to mechanical colorectal distension. Dig Dis Sci 2004;49:96-101.
  166. Adam B, Liebregts T, Gschossmann JM, et al. Severity of mucosal inflammation as a predictor for alterations of visceral sensory function in a rat model. Pain 2006;123:179-186. https://doi.org/10.1016/j.pain.2006.02.029
  167. Zhou Q, Price DD, Caudle RM, Verne GN. Visceral and somatic hypersensitivity in a subset of rats following TNBS-induced colitis. Pain 2008;134:9-15. https://doi.org/10.1016/j.pain.2007.03.029
  168. Traub RJ, Tang B, Ji Y, Pandya S, Yfantis H, Sun Y. A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Gastroenterology 2008;135:2075-2083. https://doi.org/10.1053/j.gastro.2008.08.051
  169. Verma-Gandhu M, Verdu EF, Bercik P, et al. Visceral pain perception is determined by the duration of colitis and associated neuropeptide expression in the mouse. Gut 2007;56:358-364. https://doi.org/10.1136/gut.2006.100016
  170. Larsson MH, Rapp L, Lindstrom E. Effect of DSS-induced colitis on visceral sensitivity to colorectal distension in mice. Neurogastroenterol Motil 2006;18:144-152. https://doi.org/10.1111/j.1365-2982.2005.00736.x
  171. Wlodarska M, Willing B, Keeney KM, et al. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 2011;79:1536-1545. https://doi.org/10.1128/IAI.01104-10
  172. Mendall MA, Kumar D. Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur J Gastroenterol Hepatol 1998;10:59-62. https://doi.org/10.1097/00042737-199801000-00011
  173. Verdu EF, Bercik P, Verma-Gandhu M, et al. Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 2006;55:182-190. https://doi.org/10.1136/gut.2005.066100
  174. Pimentel M, Chatterjee S, Chow EJ, Park S, Kong Y. Neomycin improves constipation-predominant irritable bowel syndrome in a fashion that is dependent on the presence of methane gas: subanalysis of a double-blind randomized controlled study. Dig Dis Sci 2006;51:1297-1301. https://doi.org/10.1007/s10620-006-9104-6
  175. Pimentel M, Lembo A, Chey WD, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med 2011;364:22-32. https://doi.org/10.1056/NEJMoa1004409
  176. Pimentel M, Morales W, Chua K, et al. Effects of Rifaximin Treatment and Retreatment in Nonconstipated IBS Subjects. Dig Dis Sci 2011;56:2067-2072. https://doi.org/10.1007/s10620-011-1728-5
  177. Salonen A, de Vos WM, Palva A. Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 2010;156(Pt 11):3205-3215.
  178. Minocha A, Johnson WD, Wigington WC. Prevalence of abdominal and pelvic surgeries in patients with irritable bowel syndrome: comparison between Caucasian and African Americans. Am J Med Sci 2008;335:82-88. https://doi.org/10.1097/MAJ.0b013e31815879ac
  179. Li S, Yu Y, Prakash R. Possible pathogenetic roles of abdominal surgery in irritable bowel syndrome. Med Hypotheses 2011;76:497-499. https://doi.org/10.1016/j.mehy.2010.11.034
  180. Miranda A, Peles S, Rudolph C, Shaker R, Sengupta JN. Altered visceral sensation in response to somatic pain in the rat. Gastroenterology 2004;126:1082-1089. https://doi.org/10.1053/j.gastro.2004.01.003
  181. Cameron DM, Brennan TJ, Gebhart GF. Hind paw incision in the rat produces long-lasting colon hypersensitivity. J Pain 2008;9:246-253. https://doi.org/10.1016/j.jpain.2007.10.017
  182. Whitehead WE, Palsson O, Jones KR. Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications? Gastroenterology 2002;122:1140-1156. https://doi.org/10.1053/gast.2002.32392
  183. Pang X, Boucher W, Triadafilopoulos G, Sant GR, Theoharides TC. Mast cell and substance P-positive nerve involvement in a patient with both irritable bowel syndrome and interstitial cystitis. Urology 1996;47:436-438. https://doi.org/10.1016/S0090-4295(99)80469-5
  184. Peters KM, Killinger KA, Ibrahim IA. Childhood symptoms and events in women with interstitial cystitis/painful bladder syndrome. Urology 2009;73:258-262. https://doi.org/10.1016/j.urology.2008.09.014
  185. Pezzone MA, Liang R, Fraser MO. A model of neural cross-talk and irritation in the pelvis: implications for the overlap of chronic pelvic pain disorders. Gastroenterology 2005;128:1953-1964. https://doi.org/10.1053/j.gastro.2005.03.008
  186. Miranda A, Mickle A, Schmidt J, et al. Neonatal cystitis-induced colonic hypersensitivity in adult rats: a model of viscero-visceral convergence. Neurogastroenterol Motil 2011;23:683-e281. https://doi.org/10.1111/j.1365-2982.2011.01724.x
  187. Van Oudenhove L, Coen SJ, Aziz Q. Functional brain imaging of gastrointestinal sensation in health and disease. World J Gastroenterol 2007;13:3438-3445.
  188. Seminowicz DA, Mikulis DJ, Davis KD. Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain 2004;112:48-58. https://doi.org/10.1016/j.pain.2004.07.027
  189. Mayer EA, Tillisch K. The brain-gut axis in abdominal pain syndromes. Annu Rev Med 2011;62:381-396. https://doi.org/10.1146/annurev-med-012309-103958
  190. Jarrett ME, Burr RL, Cain KC, Hertig V, Weisman P, Heitkemper MM. Anxiety and depression are related to autonomic nervous system function in women with irritable bowel syndrome. Dig Dis Sci 2003;48:386-394. https://doi.org/10.1023/A:1021904216312
  191. Tougas G. The autonomic nervous system in functional bowel disorders. Gut 2000;47(suppl 4):iv78-iv80; discussion iv 87.
  192. Keita AV, Söderholm JD. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol Motil 2010;22:718-733. https://doi.org/10.1111/j.1365-2982.2010.01498.x
  193. Bravo JA, Dinan TG, Cryan JF. Alterations in the central CRF system of two different rat models of comorbid depression and functional gastrointestinal disorders. Int J Neuropsychopharmacol 2011;14:666-683. https://doi.org/10.1017/S1461145710000994
  194. Lemos JC, Zhang G, Walsh T, et al. Stress-hyperresponsive WKY rats demonstrate depressed dorsal raphe neuronal excitability and dysregulated CRF-mediated responses. Neuropsychopharmacology 2011;36:721-734. https://doi.org/10.1038/npp.2010.200
  195. Overstreet DH, Djuric V. A genetic rat model of cholinergic hypersensitivity: implications for chemical intolerance, chronic fatigue, and asthma. Ann N Y Acad Sci 2001;933:92-102.
  196. Overstreet DH. The Flinders sensitive line rats: a genetic animal model of depression. Neurosci Biobehav Rev 1993;17:51-68. https://doi.org/10.1016/S0149-7634(05)80230-1
  197. Elsenbruch S, Wang L, Hollerbach S, Schedlowski M, Tougas G. Pseudo-affective visceromotor responses and HPA axis activation following colorectal distension in rats with increased cholinergic sensitivity. Neurogastroenterol Motil 2004;16:801-809. https://doi.org/10.1111/j.1365-2982.2004.00563.x
  198. Trimble N, Johnson AC, Foster A, Greenwood-van Meerveld B. Corticotropin-releasing factor receptor 1-deficient mice show decreased anxiety and colonic sensitivity. Neurogastroenterol Motil 2007;19:754-760. https://doi.org/10.1111/j.1365-2982.2007.00951.x
  199. Million M, Wang L, Stenzel-Poore MP, et al. Enhanced pelvic responses to stressors in female CRF-overexpressing mice. Am J Physiol Regul Integr Comp Physiol 2007;292:R1429-R1438.
  200. Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W. Development of Cushing's syndrome in corticotropin-releasing factor transgenic mice. Endocrinology 1992;130:3378-3386. https://doi.org/10.1210/en.130.6.3378
  201. Kimura M, Müller-Preuss P, Lu A, et al. Conditional corticotropin- releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep. Mol Psychiatry 2010;15:154-165. https://doi.org/10.1038/mp.2009.46
  202. Lu A, Steiner MA, Whittle N, et al. Conditional mouse mutants highlight mechanisms of corticotropin-releasing hormone effects on stress-coping behavior. Mol Psychiatry 2008;13:1028-1042. https://doi.org/10.1038/mp.2008.51
  203. Bakshi VP, Kalin NH. Corticotropin-releasing hormone and animal models of anxiety: gene-environment interactions. Biol Psychiatry 2000;48:1175-1198. https://doi.org/10.1016/S0006-3223(00)01082-9
  204. Kolber BJ, Bovle MP, Wieczorek, et al. Transient early-life forebrain corticotropin-releasing hormone elevation causes long-lasting anxiogenic and despair-like changes in mice. J Neurosci 2010;30:2571-2581. https://doi.org/10.1523/JNEUROSCI.4470-09.2010
  205. Deussing JM, Wurst W. Dissecting the genetic effect of the CRH system on anxiety and stress-related behaviour. C R Biol 2005;328:199-212. https://doi.org/10.1016/j.crvi.2005.01.001
  206. Delic S, Streif S, Deussing JM, et al. Genetic mouse models for behavioral analysis through transgenic RNAi technology. Genes Brain Behav 2008;7:821-830. https://doi.org/10.1111/j.1601-183X.2008.00412.x
  207. Butler RK, Finn DP. Stress-induced analgesia. Prog Neurobiol 2009;88:184-202. https://doi.org/10.1016/j.pneurobio.2009.04.003
  208. Gui X, Carraway RE, Dobner PR. Endogenous neurotensin facilitates visceral nociception and is required for stress-induced antinociception in mice and rats. Neuroscience 2004;126:1023-1032. https://doi.org/10.1016/j.neuroscience.2004.04.034
  209. Schwetz I, McRoberts JA, Coutinho SV, et al. Corticotropin-releasing factor receptor 1 mediates acute and delayed stress-induced visceral hyperalgesia in maternally separated Long-Evans rats. Am J Physiol Gastrointest Liver Physiol 2005;289:G704-G712.
  210. Rivat C, Laboureyras E, Laulin JP, Le RC, Richebe P, Simonnet G. Non-nociceptive environmental stress induces hyperalgesia, not analgesia, in pain and opioid-experienced rats. Neuropsychopharmacology 2007;32:2217-2228. https://doi.org/10.1038/sj.npp.1301340
  211. Berman SM, Naliboff BD, Suyenobu B, et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J Neurosci 2008;28:349-359. https://doi.org/10.1523/JNEUROSCI.2500-07.2008
  212. Piche M, Arsenault M, Poitras P, Rainville P, Bouin M. Widespread hypersensitivity is related to altered pain inhibition processes in irritable bowel syndrome. Pain 2010;148:49-58. https://doi.org/10.1016/j.pain.2009.10.005
  213. Song GH, Venkatraman V, Ho KY, Chee MW, Yeoh KG, Wilder-Smith CH. Cortical effects of anticipation and endogenous modulation of visceral pain assessed by functional brain MRI in irritable bowel syndrome patients and healthy controls. Pain 2006;126:79-90. https://doi.org/10.1016/j.pain.2006.06.017
  214. Wilder-Smith CH, Schindler D, Lovblad K, Redmond SM, Nirkko A. Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut 2004;53:1595-1601. https://doi.org/10.1136/gut.2003.028514
  215. Heitkemper MM, Chang L. Do fluctuations in ovarian hormones affect gastrointestinal symptoms in women with irritable bowel syndrome? Gend Med 2009;6(suppl 2):152-167.
  216. Adeyemo MA, Spiegel BM, Chang L. Meta-analysis: do irritable bowel syndrome symptoms vary between men and women? Aliment Pharmacol Ther 2010;32:738-755. https://doi.org/10.1111/j.1365-2036.2010.04409.x
  217. Fillingim RB, King CD, Ribeiro-Dasilva MC, Rahim-Williams B, Riley JL 3rd. Sex, gender, and pain: a review of recent clinical and experimental findings. J Pain 2009;10:447-485.
  218. Mulak A, Tache Y. Sex difference in irritable bowel syndrome: do gonadal hormones play a role? Gastroenterol Pol 2010;17:89-97.
  219. Koch KM, Palmer JL, Noordin N, Tomlinson JJ, Baidoo C. Sex and age differences in the pharmacokinetics of alosetron. Br J Clin Pharmacol 2002;53:238-242. https://doi.org/10.1046/j.0306-5251.2001.01565.x
  220. Tache Y, Million M, Nelson AG, Lamy C, Wang L. Role of corticotropin-releasing factor pathways in stress-related alterations of colonic motor function and viscerosensibility in female rodents. Gend Med 2005;2:146-154. https://doi.org/10.1016/S1550-8579(05)80043-9
  221. Aloisi AM, Affaitati G, Ceccarelli I, et al. Estradiol and testosterone differently affect visceral pain-related behavioural responses in male and female rats. Eur J Pain 2010;14:602-607. https://doi.org/10.1016/j.ejpain.2009.10.016
  222. Ji Y, Tang B, Traub RJ. The visceromotor response to colorectal distention fluctuates with the estrous cycle in rats. Neuroscience 2008;154:1562-1567. https://doi.org/10.1016/j.neuroscience.2008.04.070
  223. Holdcroft A, Sapsed-Byrne S, Ma D, Hammal D, Forsling ML. Sex and oestrous cycle differences in visceromotor responses and vasopressin release in response to colonic distension in male and female rats anaesthetized with halothane. Br J Anaesth 2000;85:907-910. https://doi.org/10.1093/bja/85.6.907
  224. Sapsed-Byrne S, Ma D, Ridout D, Holdcroft A. Estrous cycle phase variations in visceromotor and cardiovascular responses to colonic distension in the anesthetized rat. Brain Res 1996;742:10-16. https://doi.org/10.1016/S0006-8993(96)00989-4
  225. Ouyang A, Wrzos HF. Contribution of gender to pathophysiology and clinical presentation of IBS: should management be different in women? Am J Gastroenterol 2006;101(suppl 12):S602-S609.
  226. Azpiroz F, Bouin M, Camilleri M, et al. Mechanisms of hypersensitivity in IBS and functional disorders. Neurogastroenterol Motil 2007;19(suppl 1):62-88.
  227. Lembo T, Plourde V, Shui Z, et al. Effects of the corticotropin- releasing factor (CRF) on rectal afferent nerves in humans. Neurogastroenterol Motil 1996;8:9-18. https://doi.org/10.1111/j.1365-2982.1996.tb00237.x
  228. Nozu T, Kudaira M. Corticotropin-releasing factor induces rectal hypersensitivity after repetitive painful rectal distention in healthy humans. J Gastroenterol 2006;41:740-744. https://doi.org/10.1007/s00535-006-1848-4
  229. Sagami Y, Shimada Y, Tayama J, et al. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut 2004;53:958-964. https://doi.org/10.1136/gut.2003.018911
  230. Tayama J, Sagami Y, Shimada Y, Hongo M, Fukudo S. Effect of alpha-helical CRH on quantitative electroencephalogram in patients with irritable bowel syndrome. Neurogastroenterol Motil 2007;19:471-483. https://doi.org/10.1111/j.1365-2982.2007.00903.x
  231. La JH, Sung TS, Kim HJ, Kim TW, Kang TM, Yang IS. Peripheral corticotropin releasing hormone mediates post-inflammatory visceral hypersensitivity in rats. World J Gastroenterol 2008;14:731-736. https://doi.org/10.3748/wjg.14.731
  232. Barreau F, Cartier C, Leveque M, et al. Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: corticotrophin-releasing factor and nerve growth factor interplay. J Physiol 2007;580(Pt 1):347-356.
  233. Wallon C, Yang PC, Keita AV, et al. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 2008;57:50-58.
  234. Barbara G, Wang B, Stanghellini V, et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007;132:26-37. https://doi.org/10.1053/j.gastro.2006.11.039
  235. Van den Wijngaard RM, Klooker TK, de Jonge WJ, Boeckxstaens GE. Peripheral relays in stress-induced activation of visceral afferents in the gut. Auton Neurosci 2010;153:99-105. https://doi.org/10.1016/j.autneu.2009.07.004
  236. Cenac N, Andrews CN, Holzhausen M, et al. Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 2007;117:636-647. https://doi.org/10.1172/JCI29255
  237. Gold MS, Zhang L, Wrigley DL, Traub RJ. Prostaglandin E(2) modulates TTX-R I(Na) in rat colonic sensory neurons. J Neurophysiol 2002;88:1512-1522.
  238. Van den Wijngaard RM, Kooker TK, Welting O, et al. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterol Motil 2009;21:1107-e94. https://doi.org/10.1111/j.1365-2982.2009.01339.x
  239. Holzer P. Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. Eur J Pharmacol 2001;429:177-193. https://doi.org/10.1016/S0014-2999(01)01319-X
  240. Jones RC 3rd, Xu L, Gebhart GF. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 2005;25:10981-10989. https://doi.org/10.1523/JNEUROSCI.0703-05.2005
  241. Cregg R, Momin A, Rugiero F, Wood JN, Zhao J. Pain channelopathies. J Physiol 2010;588(Pt 11):1897-1904.
  242. McRoberts JA, Coutinho SV, Marvizon JC, et al. Role of peripheral N-methyl-D-aspartate (NMDA) receptors in visceral nociception in rats. Gastroenterology 2001;120:1737-1748. https://doi.org/10.1053/gast.2001.24848
  243. Yu YB, Yang J, Zuo XL, Gao LJ, Wang P, Li YQ. Transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1) participate in visceral hyperalgesia in chronic water avoidance stress rat model. Neurochem Res 2010;35:797-803. https://doi.org/10.1007/s11064-010-0137-z
  244. Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology 2007;132:615-627. https://doi.org/10.1053/j.gastro.2006.11.014
  245. Ravnefjord A, Brusberg M, Kang D, et al. Involvement of the transient receptor potential vanilloid 1 (TRPV1) in the development of acute visceral hyperalgesia during colorectal distension in rats. Eur J Pharmacol 2009;611:85-91. https://doi.org/10.1016/j.ejphar.2009.03.058
  246. Piche T, Barbara G, Aubert P, et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 2009;58:196-201. https://doi.org/10.1136/gut.2007.140806
  247. Ait-Belgnaoui A, Bradesi S, Fioramonti J, Theodorou V, Bueno L. Acute stress-induced hypersensitivity to colonic distension depends upon increase in paracellular permeability: role of myosin light chain kinase. Pain 2005;113:141-147. https://doi.org/10.1016/j.pain.2004.10.002
  248. Zhou Q, Zhang B, Verne GN. Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome. Pain 2009;146:41-46. https://doi.org/10.1016/j.pain.2009.06.017
  249. Santos J, Yang PC, Soderholm JD, Benjamin M, Perdue MH. Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat. Gut 2001;48:630-636. https://doi.org/10.1136/gut.48.5.630
  250. Soderholm JD, Yang PC, Ceponis P, et al. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 2002;123:1099-1108. https://doi.org/10.1053/gast.2002.36019
  251. Yu LC, Perdue MH. Role of mast cells in intestinal mucosal function: studies in models of hypersensitivity and stress. Immunol Rev 2001;179:61-73. https://doi.org/10.1034/j.1600-065X.2001.790107.x
  252. Vicario M, Guilarte M, Alonso C, et al. Chronological assessment of mast cell-mediated gut dysfunction and mucosal inflammation in a rat model of chronic psychosocial stress. Brain Behav Immun 2010;24:1166-1175. https://doi.org/10.1016/j.bbi.2010.06.002
  253. Demaude J, Salvador-Cartier C, Fioramonti J, Ferrier L, Bueno L. Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 2006;55:655-661. https://doi.org/10.1136/gut.2005.078675
  254. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun 2011;25:397-407. https://doi.org/10.1016/j.bbi.2010.10.023
  255. Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun 2010;78:1509-1519. https://doi.org/10.1128/IAI.00862-09
  256. O'Mahony SM, Marchesi JR, Scully P, et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009;65:263-267.
  257. Cryan JF, O'Mahony SM. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 2011;23:187-192. https://doi.org/10.1111/j.1365-2982.2010.01664.x
  258. Bercik P. The microbiota-gut-brain axis: learning from intestinal bacteria? Gut 2011;60:288-289. https://doi.org/10.1136/gut.2010.226779
  259. Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 2011;108:3047-3052. https://doi.org/10.1073/pnas.1010529108
  260. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009;6:306-314. https://doi.org/10.1038/nrgastro.2009.35
  261. Collins SM, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 2009;136:2003-2014. https://doi.org/10.1053/j.gastro.2009.01.075
  262. Chung EK, Zhang XJ, Xu HX, Sung JJ, Bian ZX. Visceral hyperalgesia induced by neonatal maternal separation is associated with nerve growth factor-mediated central neuronal plasticity in rat spinal cord. Neuroscience 2007;149:685-695. https://doi.org/10.1016/j.neuroscience.2007.07.055
  263. Chung EK, Bian ZX, Xu HX, Sung JJ. Neonatal maternal separation increases brain-derived neurotrophic factor and tyrosine kinase receptor B expression in the descending pain modulatory system. Neurosignals 2009;17:213-221. https://doi.org/10.1159/000224631
  264. Matricon J, Gelot A, Etienne M, Lazdunski M, Muller E, Ardid D. Spinal cord plasticity and acid-sensing ion channels involvement in a rodent model of irritable bowel syndrome. Eur J Pain 2011;15:335-343. https://doi.org/10.1016/j.ejpain.2010.08.005
  265. Gaudreau GA, Plourde V. Role of tachykinin NK1, NK2 and NK3 receptors in the modulation of visceral hypersensitivity in the rat. Neurosci Lett 2003;351:59-62. https://doi.org/10.1016/S0304-3940(03)00414-2
  266. Bradesi S, Kokkotou E, Simeonidis S, et al. The role of neurokinin 1 receptors in the maintenance of visceral hyperalgesia induced by repeated stress in rats. Gastroenterology 2006;130:1729-1742. https://doi.org/10.1053/j.gastro.2006.01.037
  267. Bradesi S, Svensson CI, Steinauer J, Pothoulakis C, Yaksh TL, Mayer EA. Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress. Gastroenterology 2009;136:1339-1348, e1-e2 https://doi.org/10.1053/j.gastro.2008.12.044
  268. Bradesi S. Role of spinal cord glia in the central processing of peripheral pain perception. Neurogastroenterol Motil 2010;22:499-511. https://doi.org/10.1111/j.1365-2982.2010.01491.x
  269. Saab CY, Park YC, Al-Chaer ED. Thalamic modulation of visceral nociceptive processing in adult rats with neonatal colon irritation. Brain Res 2004;1008:186-192. https://doi.org/10.1016/j.brainres.2004.01.083
  270. Bradesi S, Svensson CI, Steinauer J, Pothoulakis C, Yaksh TL, Mayer EA. Role of spinal microglia activation in visceral hyperalgesia following chronic psychological stress in Wistar rats. Gastroenterology 2009;136:1339-1348. https://doi.org/10.1053/j.gastro.2008.12.044
  271. Liaw WJ, Stephens RL Jr, Binns BC, et al. Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord. Pain 2005;115:60-70. https://doi.org/10.1016/j.pain.2005.02.006
  272. Lin Y, Tian G, Roman K, et al. Increased glial glutamate transporter EAAT2 expression reduces visceral nociceptive response in mice. Am J Physiol Gastrointest Liver Physiol 2009;296:G129-G134.
  273. Svensson CI, Hua XY, Protter AA, Powell HC, Yaksh TL. Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE(2) release and thermal hyperalgesia. Neuroreport 2003;14:1153-1157. https://doi.org/10.1097/00001756-200306110-00010
  274. Gosselin RD, O'Connor RM, Tramullas M, Julio-Pieper M, Dinan TG, Cryan JF. Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms. Gastroenterology 2010;138:2418-2425. https://doi.org/10.1053/j.gastro.2010.03.003
  275. Tjong YW, Ip SP, Lao L, et al. Neonatal maternal separation elevates thalamic corticotrophin releasing factor type 1 receptor expression response to colonic distension in rat. Neuro Endocrinol Lett 2010;31:215-220.
  276. Tillisch K, Mayer EA, Labus JS. Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology 2011;140:91-100. https://doi.org/10.1053/j.gastro.2010.07.053
  277. Zhang R, Zou N, Li J, et al. Elevated expression of c-fos in central nervous system correlates with visceral hypersensitivity in irritable bowel syndrome (IBS): a new target for IBS treatment. Int J Colorectal Dis Published Online First: 22 Feb 2011. doi:10.1016/j.expneurol.2011.04.020
  278. Chang L. Brain responses to visceral and somatic stimuli in irritable bowel syndrome: a central nervous system disorder? Gastroenterol Clin North Am 2005;34:271-279. https://doi.org/10.1016/j.gtc.2005.02.003
  279. Dayas CV, Buller KM, Crane JW, Xu Y, Day TA. Stressor categorization: acute physical and psychological stressors elicit distinctive recruitment patterns in the amygdala and in medullary noradrenergic cell groups. Eur J Neurosci 2001;14:1143-1152. https://doi.org/10.1046/j.0953-816x.2001.01733.x
  280. Greenwood-Van Meerveld B, Gibson M, Gunter W, Shepard J, Foreman R, Myers D. Stereotaxic delivery of corticosterone to the amygdala modulates colonic sensitivity in rats. Brain Res 2001;893:135-142. https://doi.org/10.1016/S0006-8993(00)03305-9
  281. Myers B, Dittmeyer K, Greenwood-Van MB. Involvement of amygdaloid corticosterone in altered visceral and somatic sensation. Behav Brain Res 2007;181:163-167. https://doi.org/10.1016/j.bbr.2007.03.031
  282. Myers B, Greenwood-Van Meerveld B. Corticosteroid receptor- mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. Am J Physiol Gastrointest Liver Physiol 2007;292:G1622-G1629. https://doi.org/10.1152/ajpgi.00080.2007
  283. Kim SH, Han JE, Hwang S, Oh DH. The expression of corticotropin-releasing factor in the central nucleus of the amygdala, induced by colorectal distension, is attenuated by general anesthesia. J Korean Med Sci 2010;25:1646-1651. https://doi.org/10.3346/jkms.2010.25.11.1646
  284. Nishii H, Nomura M, Aono H, Fujimoto N, Matsumoto T. Up-regulation of galanin and corticotropin-releasing hormone mRNAs in the key hypothalamic and amygdaloid nuclei in a mouse model of visceral pain. Regul Pept 2007;141:105-112. https://doi.org/10.1016/j.regpep.2006.12.022
  285. Kosoyan HP, Grigoriadis DE, Tache Y. The CRF(1) receptor antagonist, NBI-35965, abolished the activation of locus coeruleus neurons induced by colorectal distension and intracisternal CRF in rats. Brain Res 2005;1056:85-96. https://doi.org/10.1016/j.brainres.2005.07.010
  286. Curtis AL, Pavcovich LA, Grigoriadis DE, Valentino RJ. Previous stress alters corticotropin-releasing factor neurotransmission in the locus coeruleus. Neuroscience 1995;65:541-550. https://doi.org/10.1016/0306-4522(94)00496-R
  287. Lechner SM, Curtis AL, Brons R, Valentino RJ. Locus coeruleus activation by colon distention: role of corticotropin-releasing factor and excitatory amino acids. Brain Res 1997;756:114-124. https://doi.org/10.1016/S0006-8993(97)00116-9
  288. Rouzade-Dominguez ML, Curtis AL, Valentino RJ. Role of Barrington's nucleus in the activation of rat locus coeruleus neurons by colonic distension. Brain Res 2001;917:206-218. https://doi.org/10.1016/S0006-8993(01)02917-1
  289. Reyes BA, Glaser JD, Van Bockstaele EJ. Ultrastructural evidence for co-localization of corticotropin-releasing factor receptor and mu-opioid receptor in the rat nucleus locus coeruleus. Neurosci Lett 2007;413:216-221. https://doi.org/10.1016/j.neulet.2006.11.069
  290. Reyes BA, Valentino RJ, Van Bockstaele EJ. Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons. Endocrinology 2008;149:122-130.
  291. Valentino RJ, Miselis RR, Pavcovich LA. Pontine regulation of pelvic viscera: pharmacological target for pelvic visceral dysfunctions. Trends Pharmacol Sci 1999;20:253-260. https://doi.org/10.1016/S0165-6147(99)01332-2
  292. Kuner R. Central mechanisms of pathological pain. Nat Med 2010;16:1258-1266. https://doi.org/10.1038/nm.2231
  293. Cheong E, Lee S, Choi BJ, Sun M, Lee CJ, Shin HS. Tuning thalamic firing modes via simultaneous modulation of T- and L-type $Ca^{2+}$ channels controls pain sensory gating in the thalamus. J Neurosci 2008;28:13331-13340. https://doi.org/10.1523/JNEUROSCI.3013-08.2008
  294. Ren Y, Zhang L, Lu Y, Yang H, Westlund KN. Central lateral thalamic neurons receive noxious visceral mechanical and chemical input in rats. J Neurophysiol 2009;102:244-258. https://doi.org/10.1152/jn.90985.2008
  295. Zhuo M, Gebhart GF. Facilitation and attenuation of a visceral nociceptive reflex from the rostroventral medulla in the rat. Gastroenterology 2002;122:1007-1019. https://doi.org/10.1053/gast.2002.32389
  296. Sanoja R, Tortorici V, Fernandez C, Price TJ, Cervero F. Role of RVM neurons in capsaicin-evoked visceral nociception and referred hyperalgesia. Eur J Pain 2010;14:120.e1-e9.
  297. Martenson ME, Cetas JS, Heinricher MM. A possible neural basis for stress-induced hyperalgesia. Pain 2009;142:236-244. https://doi.org/10.1016/j.pain.2009.01.011
  298. Kearney DJ, Brown-Chang J. Complementary and alternative medicine for IBS in adults: mind-body interventions. Nat Clin Pract Gastroenterol Hepatol 2008;5:624-636.
  299. Palsson OS, Drossman DA. Psychiatric and psychological dysfunction in irritable bowel syndrome and the role of psychological treatments. Gastroenterol Clin North Am 2005;34:281-303. https://doi.org/10.1016/j.gtc.2005.02.004
  300. Whorwell PJ. Behavioral therapy for IBS. Nat Clin Pract Gastroenterol Hepatol 2009;6:148-149. https://doi.org/10.1038/ncpgasthep1361
  301. Blanchard EB, Lackner JM, Sanders K, et al. A controlled evaluation of group cognitive therapy in the treatment of irritable bowel syndrome. Behav Res Ther 2007;45:633-648. https://doi.org/10.1016/j.brat.2006.07.003
  302. Warnock JK, Clayton AH. Chronic episodic disorders in women. Psychiatr Clin North Am 2003;26:725-740. https://doi.org/10.1016/S0193-953X(03)00042-X
  303. Verdu B, Decosterd I, Buclin T, Stiefel F, Berney A. Antidepressants for the treatment of chronic pain. Drugs 2008;68:2611-2632. https://doi.org/10.2165/0003495-200868180-00007
  304. Larauche M, Mulak A, Tache Y. Stress and visceral pain: from animal models to clinical therapies. Exp Neurol Published Online First: 6 May 2011. doi:10.1016/j.expneurol.2011.04.020
  305. Camilleri M, Andresen V. Current and novel therapeutic options for irritable bowel syndrome management. Dig Liver Dis 2009;41:854-862. https://doi.org/10.1016/j.dld.2009.07.009
  306. Million M, Wang L, Adelson DW, Roman F, Diop L, Tache Y. Pregabalin decreases visceral pain and prevents spinal neuronal activation in rats. Gut 2007;56:1482-1484. https://doi.org/10.1136/gut.2007.129304
  307. Camilleri M. Review article: new receptor targets for medical therapy in irritable bowel syndrome. Aliment Pharmacol Ther 2010;31:35-46. https://doi.org/10.1111/j.1365-2036.2009.04153.x
  308. Collins SM, Denou E, Verdu EF, Bercik P. The putative role of the intestinal microbiota in the irritable bowel syndrome. Dig Liver Dis 2009;41:850-853. https://doi.org/10.1016/j.dld.2009.07.023
  309. Dukes GE, Mayer EA, Kelleher DL, Hicks KJ, Boardley RL, Alpers DH. A randomized, double blind, placebo (PLA) controlled, crossover study to evaluate the efficacy and safety of the corticotropin releasing factor 1 (CRF1) receptor antagonist (RA) GW876008 in irritable bowel syndrome (IBS) patients (Pts). Neurogastroenterol Motil 2009;21(suppl 1):84.
  310. Klooker TK, Leliefeld KE, van den Wijngaard RM, Boeckxstaens GE. The cannabinoid receptor agonist delta-9-tetrahydrocannabinol does not affect visceral sensitivity to rectal distension in healthy volunteers and IBS patients. Neurogastroenterol Motil 2011;23:30-35, e2. https://doi.org/10.1111/j.1365-2982.2010.01587.x
  311. Klooker TK, Kuiken SD, Lei A, Boeckxstaens GE. Effect of long-term treatment with octreotide on rectal sensitivity in patients with non-constipated irritable bowel syndrome. Aliment Pharmacol Ther 2007;26:605-615. https://doi.org/10.1111/j.1365-2036.2007.03398.x
  312. Bailey JE, Papadopoulos A, Diaper A, et al. Preliminary evidence of anxiolytic effects of the CRF1 receptor antagonist R317573 in the 7.5% $CO_2$ proof-of-concept experimental model of human anxiety. J Psychopharmacol Published Online First: 9 May 2011. doi:10.1177/0269881111400650

Cited by

  1. PKCγ receptor mediates visceral nociception and hyperalgesia following exposure to PTSD-like stress in the spinal cord of rats vol.9, pp.None, 2011, https://doi.org/10.1186/1744-8069-9-35
  2. Disodium Cromoglycate Reverses Colonic Visceral Hypersensitivity and Influences Colonic Ion Transport in a Stress-Sensitive Rat Strain vol.8, pp.12, 2011, https://doi.org/10.1371/journal.pone.0084718
  3. Impact of psychological stress on irritable bowel syndrome vol.20, pp.39, 2011, https://doi.org/10.3748/wjg.v20.i39.14126
  4. Effect of commensals and probiotics on visceral sensitivity and pain in irritable bowel syndrome vol.5, pp.3, 2011, https://doi.org/10.4161/gmic.29796
  5. Behavioral and molecular processing of visceral pain in the brain of mice: impact of colitis and psychological stress vol.9, pp.None, 2011, https://doi.org/10.3389/fnbeh.2015.00177
  6. Stress-Induced Visceral Pain: Toward Animal Models of Irritable-Bowel Syndrome and Associated Comorbidities vol.6, pp.None, 2011, https://doi.org/10.3389/fpsyt.2015.00015
  7. The Effect of Emotional Stress and Depression on the Prevalence of Digestive Diseases vol.21, pp.2, 2011, https://doi.org/10.5056/jnm14116
  8. Visceral hypersensitive rats share common dysbiosis features with irritable bowel syndrome patients vol.22, pp.22, 2016, https://doi.org/10.3748/wjg.v22.i22.5211
  9. Limited Nesting Stress Alters Maternal Behavior and In Vivo Intestinal Permeability in Male Wistar Pup Rats vol.11, pp.5, 2011, https://doi.org/10.1371/journal.pone.0155037
  10. Repeated Water Avoidance Stress Alters Mucosal Mast Cell Counts, Interleukin-1β Levels with Sex Differences in the Distal Colon of Wistar Rats vol.22, pp.4, 2016, https://doi.org/10.5056/jnm16007
  11. The stress concept in gastroenterology: from Selye to today vol.6, pp.None, 2011, https://doi.org/10.12688/f1000research.12435.1
  12. P2X3 receptor‐mediated visceral hyperalgesia and neuronal sensitization following exposure to PTSD‐like stress in the dorsal root ganglia of rats vol.29, pp.3, 2011, https://doi.org/10.1111/nmo.12976
  13. Assessment and manifestation of central sensitisation across different chronic pain conditions vol.22, pp.2, 2011, https://doi.org/10.1002/ejp.1140
  14. The Protective Effect of Melissa officinalis L. in Visceral Hypersensitivity in Rat Using 2 Models of Acid-induced Colitis and Stress-induced Irritable Bowel Syndrome: A Possible Role of Nitric Oxid vol.24, pp.3, 2011, https://doi.org/10.5056/jnm17035
  15. Effects of Fengliao-Changweikang in Diarrhea-predominant Irritable Bowel Syndrome Rats and Its Mechanism Involving Colonic Motility vol.24, pp.3, 2011, https://doi.org/10.5056/jnm17093
  16. Functional Bowel Disorders: A Roadmap to Guide the Next Generation of Research vol.154, pp.3, 2011, https://doi.org/10.1053/j.gastro.2017.12.010
  17. Utility of animal gastrointestinal motility and transit models in functional gastrointestinal disorders vol.40, pp.None, 2019, https://doi.org/10.1016/j.bpg.2019.101633
  18. Effects of thermized donkey milk with lysozyme activity on altered gut barrier in mice exposed to water-avoidance stress vol.102, pp.9, 2011, https://doi.org/10.3168/jds.2019-16642
  19. Effect of Tong Xie Yao Fang on endogenous metabolites in urine of irritable bowel syndrome model rats vol.25, pp.34, 2011, https://doi.org/10.3748/wjg.v25.i34.5134
  20. Irritable bowel syndrome: a new therapeutic target when treating obesity? vol.18, pp.4, 2011, https://doi.org/10.1007/s42000-019-00113-9
  21. Prevalence of Subthreshold Depression Among Constipation-Predominant Irritable Bowel Syndrome Patients vol.11, pp.None, 2011, https://doi.org/10.3389/fpsyg.2020.01936
  22. Microbiota-neuroimmune cross talk in stress-induced visceral hypersensitivity of the bowel vol.318, pp.6, 2011, https://doi.org/10.1152/ajpgi.00196.2019
  23. An automated sensitive approach for measuring whole gut transit time vol.32, pp.9, 2011, https://doi.org/10.1111/nmo.13894
  24. Otilonium Bromide treatment prevents nitrergic functional and morphological changes caused by chronic stress in the distal colon of a rat IBS model vol.25, pp.14, 2011, https://doi.org/10.1111/jcmm.16710