DOI QR코드

DOI QR Code

Oxygen Effects on the Mechanical Properties and Lattice Strain of Ti and Ti-6Al-4V

  • Oh, J.M. (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee, B.G. (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Cho, S.W. (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Lee, S.W. (Department of Metallurgical Engineering, Chungnam National University) ;
  • Choi, G.S. (Gangwon Industrial Technology Research Center, Research Institute of Industrial Science & Technology) ;
  • Lim, J.W. (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources)
  • Published : 2011.10.20

Abstract

The effects of oxygen on the mechanical properties and the lattice strain of commercial pure CP) Ti and Ti-6Al-4V alloys are discussed here in terms of the Vickers hardness, tensile strength and elongation. The Vickers hardness and tensile strength of the CP Ti and the Ti-6Al-4V alloys increased with an increase in the oxygen concentration. On the other hand, the elongation of the CP Ti decreased considerably as the oxygen concentration increased, while that of the Ti-6Al-4V alloys gradually decreased as the oxygen concentration increased. Thus, the oxygen concentration has a greater effect on the mechanical properties of CP Ti compared to its effects on the Ti-6Al-4V alloy. This can be explained in terms of the difference in the solid solution effect of oxygen between the CP Ti and the Ti-6Al-4V alloy. Where, the mechanical properties of Ti-6Al-4V alloy were previously affected by an earlier lattice expansion caused by an increment in the c/a ratio of the Ti-6Al-4V during the Al and V alloying process.

Keywords

References

  1. B. J. Choi and Y. J. Kim, Kor. J. Met. Mater. 48, 780 (2010).
  2. D. J. Simbi and J. C. Scully, Mater. Lett. 26, 35 (1996). https://doi.org/10.1016/0167-577X(95)00204-9
  3. G. Lutjering and J. C. Williams, Titanium, p. 34, Springer (2003).
  4. S. Anderson, B. Collen, V. Kuylenstierna, and A. Magneli, Acta. Chem. Scand. 11, 1641 (1957). https://doi.org/10.3891/acta.chem.scand.11-1641
  5. G. A. Sargent and H. Conrad, Scr. Metall. 6, 1099 (1972). https://doi.org/10.1016/0036-9748(72)90196-2
  6. M. Dechamps, A. Quivy, G. Baur, and P. Lehr, Scr. Metall. 11, 941 (1977). https://doi.org/10.1016/0036-9748(77)90243-5
  7. R. I. Jaffee, H. Kimura, and O. Izumi, Titanium'80, Science and Technology. 4, 1665 (1980).
  8. C. Suryanarayana and M. C. Norton, X-Ray Diffraction, p. 142, A Practical Approach, Plenum Press (1998).
  9. S. Amelinckx, The Direct Observation of Dislocation, p. 381, Academic Press (1964).
  10. C. Ouchi, H. Iizumi, and S. Mitao, Mater. Sci. Eng. A. 243, 186 (1998). https://doi.org/10.1016/S0921-5093(97)00799-5

Cited by

  1. 치과용(齒科用) 순(純) 타이타늄 스크랩을 재활용(再活用)한 Ti-6Al-4V 합금(合金)의 제조(製造) 및 산소(酸素) 제어(制御) vol.21, pp.1, 2011, https://doi.org/10.7844/kirr.2012.21.1.060
  2. 아크용(用) 소모성(消耗性) 전극(電極) 제조(製造)를 위한 타이타늄 선삭(旋削) 스크랩의 재활용(再活用) vol.21, pp.5, 2011, https://doi.org/10.7844/kirr.2012.21.5.58
  3. Preparation method of Ti powder with oxygen concentration of <1000 ppm using Ca vol.55, pp.5, 2012, https://doi.org/10.1179/1743290112y.0000000013
  4. Fracture Toughness of Powder Metallurgy and Ingot Titanium Alloys - A Review vol.551, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/kem.551.143
  5. 티타늄 합금 스크랩의 재활용 및 응용 기술 현황 vol.19, pp.2, 2011, https://doi.org/10.7464/ksct.2013.19.2.075
  6. Influence of oxygen content on the mechanical properties of hexagonal Ti-First principles calculations vol.590, pp.None, 2011, https://doi.org/10.1016/j.msea.2013.10.004
  7. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys vol.57, pp.4, 2011, https://doi.org/10.1179/1743290114y.0000000108
  8. Ti-6Al-4V 및 Ti-8Al-1Mo-1V 합금 스크랩을 이용한 저산소 분말 제조와 탈산방법 비교 vol.24, pp.1, 2015, https://doi.org/10.7844/kirr.2015.24.1.21
  9. Ti-6Al-4V 및 Ti-8Al-1Mo-1V 합금 스크랩을 이용한 저산소 분말 제조와 탈산방법 비교 vol.24, pp.1, 2015, https://doi.org/10.7844/kirr.2015.24.1.21
  10. Coupling electron beam melting and spark plasma sintering: A new processing route for achieving titanium architectured microstructures vol.122, pp.None, 2011, https://doi.org/10.1016/j.scriptamat.2016.05.001
  11. Porosity, Microstructure, and Mechanical Properties of Ti-6Al-4V Alloy Parts Fabricated by Powder Compact Forging vol.48, pp.4, 2011, https://doi.org/10.1007/s11661-017-3965-5
  12. Sliding Wear Behavior of UNS R56400 Titanium Alloy Samples Thermally Oxidized by Laser vol.10, pp.7, 2011, https://doi.org/10.3390/ma10070830
  13. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-08681-9
  14. Build Strategy Investigation of Ti-6Al-4V Produced Via a Hybrid Manufacturing Process vol.70, pp.9, 2011, https://doi.org/10.1007/s11837-018-3009-7
  15. Effects of Reusing Ti-6Al-4V Powder in a Selective Laser Melting Additive System Operated in an Industrial Setting vol.70, pp.9, 2011, https://doi.org/10.1007/s11837-018-3011-0
  16. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes vol.563, pp.7732, 2011, https://doi.org/10.1038/s41586-018-0685-y
  17. Microstructural Evolution and Mechanical Behavior of Heat Treated Ti-6Al-4V Powders vol.7, pp.6, 2011, https://doi.org/10.1007/s13632-018-0488-4
  18. Titanium Plasma-Sprayed Coatings on Polymers for Hard Tissue Applications vol.11, pp.12, 2011, https://doi.org/10.3390/ma11122536
  19. Preparation method of low-oxygen Ti-6Al-4V alloy by solid state re-deoxidation using calcium vol.35, pp.6, 2019, https://doi.org/10.1080/02670836.2019.1583846
  20. Influence of Powder Microstructure on the Microstructural Evolution of As-Sprayed and Heat Treated Cold-Sprayed Ti-6Al-4V Coatings vol.28, pp.1, 2011, https://doi.org/10.1007/s11666-018-0812-1
  21. Assessment the Sliding Wear Behavior of Laser Microtexturing Ti6Al4V under Wet Conditions vol.9, pp.2, 2019, https://doi.org/10.3390/coatings9020067
  22. Mapping the Tray of Electron Beam Melting of Ti-6Al-4V: Properties and Microstructure vol.12, pp.9, 2011, https://doi.org/10.3390/ma12091470
  23. Investigation of strain redistribution mechanism in α titanium by image-based crystal plasticity analysis vol.92, pp.9, 2011, https://doi.org/10.1140/epjb/e2019-100238-3
  24. Influence of plasma excitation power on mechanical property and biocompatibility of titania/alumina composite thin films for medical implant prepared by magnetron sputtering vol.6, pp.11, 2011, https://doi.org/10.1088/2053-1591/ab44d9
  25. Nanosecond Pulsed Laser Irradiation of Titanium Alloy Substrate: Effects of Periodic Patterned Topography on the Optical Properties of Colorizing Surfaces vol.9, pp.10, 2011, https://doi.org/10.3390/coatings9100658
  26. Effect of Mn Addition on Microstructural Changes and Mechanical Properties of Ti-5Al-2.5Fe Alloys vol.25, pp.6, 2011, https://doi.org/10.1007/s12540-018-0115-6
  27. Effect of oxygen contents on strain rate sensitivity of commercially pure titanium vol.321, pp.None, 2011, https://doi.org/10.1051/matecconf/202032104009
  28. Study on edge cracking of titanium cold rolled sheet vol.321, pp.None, 2011, https://doi.org/10.1051/matecconf/202032111017
  29. Mechanical properties of near alpha titanium alloys for high-temperature applications - a review vol.92, pp.4, 2020, https://doi.org/10.1108/aeat-04-2019-0086
  30. Strength-ductility improvement of extruded Ti-(N) materials using pure Ti powder with high nitrogen solution vol.779, pp.None, 2020, https://doi.org/10.1016/j.msea.2020.139136
  31. Ultimate Deoxidation Method of Titanium Utilizing Y/YOCl/YCl3 Equilibrium vol.51, pp.2, 2011, https://doi.org/10.1007/s11663-019-01742-6
  32. Effect of α-lath size on the mechanical properties of Ti-6Al-4V using core time hydrogen heat treatment vol.36, pp.7, 2020, https://doi.org/10.1080/02670836.2020.1745425
  33. Deoxidation Behavior of Zr Powder Manufactured by Using Self-Propagating High-Temperature Synthesis with Mg Reducing Agent vol.51, pp.3, 2011, https://doi.org/10.1007/s11663-020-01815-x
  34. An Innovative Approach on Directed Energy Deposition Optimization: A Study of the Process Environment’s Influence on the Quality of Ti-6Al-4V Samples vol.10, pp.12, 2011, https://doi.org/10.3390/app10124212
  35. Influence of Interstitial Oxygen on the Tribology of Ti6Al4V vol.68, pp.3, 2011, https://doi.org/10.1007/s11249-020-01327-4
  36. Mechanical Properties of Selective Laser Sintering Pure Titanium and Ti-6Al-4V, and Its Anisotropy vol.13, pp.22, 2011, https://doi.org/10.3390/ma13225081
  37. Reuse of Ti6Al4V Powder and Its Impact on Surface Tension, Melt Pool Behavior and Mechanical Properties of Additively Manufactured Components vol.14, pp.5, 2021, https://doi.org/10.3390/ma14051251
  38. 타이타늄 스크랩을 활용한 페로 -타이타늄 전처리 공정 적용 모합금 주조 vol.41, pp.2, 2021, https://doi.org/10.7777/jkfs.2021.41.2.139
  39. Towards a digital twin of laser powder bed fusion with a focus on gas flow variables vol.65, pp.None, 2011, https://doi.org/10.1016/j.jmapro.2021.03.035
  40. High Strain Rate Behavior of GTM-900 Titanium Alloy vol.10, pp.2, 2021, https://doi.org/10.1520/mpc20200157
  41. Effect of Direct Powder Forging Process on the Mechanical Properties and Microstructural of Ti-6Al-4V ELI vol.14, pp.16, 2011, https://doi.org/10.3390/ma14164499
  42. Achieving a high strength and tensile ductility synergy of a high-oxygen powder metallurgy near alpha titanium alloy by importing βt domains into lamellar structures vol.894, pp.None, 2011, https://doi.org/10.1016/j.jallcom.2021.162517