Sampling Rate Evaluation of Atmospheric PAHs to Pine Needles for Passive Air Sampler

PAS를 위한 대기 중 PAHs의 소나무잎 침착율 산정

  • Chun, Man Young (Deptment of Environmental Engineering, Hankyung National University)
  • 천만영 (한경대학교 환경공학과)
  • Published : 2011.06.30

Abstract

This study was carried out to use pine needles as passive air sampler (PAS) of atmospheric polycyclic aromatic hydrocarbons (PAHs). PAHs concentrations in ambient air ($C_a$) and pine needles ($C_p$) were analyzed simultaneously from June 1 to December 31 using low volume PUF active air sampler. Furthermore, sampling rates ($m^3$/day-g dry) of PAHs in the air to pine needles were calculated using $C_a$ and $C_a$. Average sampling rate was 0.16 (0.00068-0.91) $m^3$/day-g dry, which was the greatest in PAHs (Pyr, BkF, BaA, Chry, BbF, and BkF) with molecular weight of 202.26-252.32 and octanol-air partitioning coefficient ($logK_{oa}$) of 8.61-11.37. These values were the lowest with respect to PUF disk, XAD-2 resin and semipermeable membrane devices (SPMDs) PAS, demonstrating that pine needles are suitable for long time PAS as a result of very low sampling rates.

Keywords

References

  1. WHO, 1987, "Air quality guidelines for Europe" European SCr. No. 23, WHO Pub.
  2. K. Ravindra, R. Sokhi and R.V. Grieken, Atmospheric Environment, 2008, 42(13), 2895-2921. https://doi.org/10.1016/j.atmosenv.2007.12.010
  3. B.D. Eitzer and R.A. Hites, Environmental Science & Technology, 1989, 23(11), 1396-1401. https://doi.org/10.1021/es00069a011
  4. S.O. Baek and J.S. Choi, Journal of Korea Air Pollution Research Association, 1998, 14(2), 117-131.
  5. S.D. Choi and Y.S. Chang, Journal of Korean Society for Atmospheric Environment, 2005, 21(5), 481-494.
  6. M.Y. Chun, Journal of Korean Society of Environmental Engineering, 1998, 20(10), 1377-1383.
  7. M.Y. Chun, Journal of Korean Society of Environmental Engineering, 2005, 27(6), 599-605.
  8. M.Y. Chun, Journal of Environmental Toxicology, 2008, 23(3), 213-220.
  9. I.Y. Shim, H.G. Yeo, M.K. Choi, T.W Kim and M.Y. Chun, Journal of Korean Society of Environmental Engineering, 2002, 24(12), 2227-2237.
  10. T. Harner, M. Shoeib, M. Diamond, G. Stern and B. Rosenberg, Environmental Science & Technology, 2004, 38(17), 4474-44834. https://doi.org/10.1021/es040302r
  11. J.R. Aboal, J.A. Fernandez and A. Carballeira, Environmental Pollution, 2001, 115(2), 313-316. https://doi.org/10.1016/S0269-7491(01)00116-6
  12. M.Y. Chun, The Korean Society of Environmental Health and Toxicology, 2011, 26, eISSN 2233-6567.
  13. T. Gareth, A.J. Sweetman, W.A. Ockenden, D. Mackay and K.C. Jones, Environmental Science & Technology, 1998, 32(7), 936-942. https://doi.org/10.1021/es970761a
  14. N. Hanari, Y. Horii, T. Okazawa, J. Falandysz, I, Bochentin and A. Orlikowska, Journal of Environmental Monitoring, 1999, 6, 305-312.
  15. H. Kylin, A. Hellstrom, E. Nordstrand and A. Zaid, Chemosphere, 2003, 51(8), 669-675. https://doi.org/10.1016/S0045-6535(03)00101-2
  16. G. Ok, S.H. Ji, S.J. Kim, Y.K. Kim, J.H. Park, Y.S Kim and Y.H. Han, Chemosphere, 2002, 46, 1351-1357. https://doi.org/10.1016/S0045-6535(01)00261-2
  17. S. Safe, K.W. Brown, K.C. Donnelly, C.S. Anderson, K.V. Markiewicz and M.S. McLachlan, Environmental Science & Technology, 1992, 26(2), 394-396. https://doi.org/10.1021/es00026a023
  18. W.M.J Strachan, G. Eriksson, H. Kylin and S. Jensen, Environmental Toxicology and Chemistry, 1994, 13(3), 443-451. https://doi.org/10.1002/etc.5620130312
  19. H.G. Yeo, M.K. Choi, M.Y. Chun, T.W. Kim and Y. Sunwoo, Journal of Korean Society for Atmospheric Environment, 2002, 18(4), 265-274.
  20. H.G. Yeo, K.C. Cho, M.K. Choi, T.W. Kim and M.Y. Chun, Journal of Korean Society of Environmental Engineering, 2006, 28(8), 836-842.
  21. E. Bacci, D. Calamari, C. Gaggi and M. Vighi, Environmental Science & Technology, 1990, 24(6).
  22. H. Hauk, G. Umlauf and M.S. McLachlan, Environmental Science & Technology, 1994, 28(13): 2372-2379. https://doi.org/10.1021/es00062a023
  23. K.W. Pausch, M.S. McLachlan and G. Umlauf, Environmental Science & Technology, 1995, 29(4), 1090-1098. https://doi.org/10.1021/es00004a031
  24. A.D. Guardo, S. Zaccara, B. Cerabolini, M. Acciarri, G. Terzaghi and D. Calamari, Chemosphere, 2003, 52(5), 789-797. https://doi.org/10.1016/S0045-6535(03)00256-X
  25. M. Shoeib and T. Haener, Environmental Science & Technology, 2002, 36(19), 4142-4151. https://doi.org/10.1021/es020635t
  26. F. Wania, L. Shen, Y.D. Lei, C. Teixeira and D.C.G. Muir, Environmental Science & Technology, 2003, 37(7), 1352-1359. https://doi.org/10.1021/es026166c
  27. J. He, R. Balasubramanian, Atmospheric Environment, 2010, 44, 884-891. https://doi.org/10.1016/j.atmosenv.2009.12.009
  28. C. Chaemfa, J.L. Barber, T.Gocht, T. Harner, I. Holoubek, J. Klanova and K. Jones, Environmental pollution, 2008, 153(3), 1290-1297.
  29. M. Mackay, W.Y. Shiu and K.C. Ma, 1997, "Illustrated handbook of physical-chemical properies and environmental fate for organic chemicals" volume II, pp250-251, Lewis Publishers, Michigan, U.S.A.
  30. O, Mustafa, E. Cetin and A. Sofuoglu, Atmospheric Environment, 2006, 40, 615-6625.
  31. M.Y. Chun and T.W. Kim, Korean Journal of Environmental Agriculture, 1998, 17(2), 117-121.
  32. J.F. Niu, J.W. Chen, D. Martens, B. Henkelmann, X. Quan, F.L. Yang, H.K. Seidlitz and K.W. Schramm, Science of the Total Environment, 2004, 322, 231-241. https://doi.org/10.1016/j.scitotenv.2003.09.017
  33. 기상청, 자동기상관측연보, 2010, p191.