DOI QR코드

DOI QR Code

High Temperature Capacitors using a $BiScO_3-BaTiO_3-(K_{1/2}Bi_{1/2})TiO_3$ Ternary System

  • Lim, Jong-Bong (Nano. Functional Materials Group, Korea Institute of Materials Science) ;
  • Zhang, Shujun (Material Research Institute, Pennsylvania State University) ;
  • Shrout, Thomas R. (Material Research Institute, Pennsylvania State University)
  • Published : 2011.03.01

Abstract

$BiScO_3-BaTiO_3$ with $(K_{1/2}Bi_{1/2})TiO_3$ [BSBT-KBTx] in the perovskite solid solution system were prepared by conventional ceramic processing for potential high temperature capacitors. The effect of KBT on the dielectric properties of BSBT was investigated as a function of temperature and frequency. The BSBT-KBT20 exhibited high dielectric permittivity and low dielectric loss over the temperature range from $100{^{\circ}C}$ to $300{^{\circ}C}$ with flat coefficients of temperature ($TC{\varepsilon}s$). In addition, BSBT-KBTx were observed to possess dielectric relaxation behavior at temperatures (> RT) as observed in lead-based relaxors. Furthermore, the E-field polarization behavior was investigated showing high energy density of $1.28 J/cm^3$ at 100 kV/cm for the BSBT-KBT20.

Keywords

References

  1. E. Sugimoto, IEEE Electrical Insulation Magazine 5, 15 (1989). https://doi.org/10.1109/57.16949
  2. R. S. Demcko, Proc. 39 th IEEE Electronic Components Conf., 390 (1988).
  3. B. Jaffe, W. R. Cook, and H. Jaffe, London and New York: Academic Press 317, 550 (1971).
  4. D. Hennings, A. Schnell, and G. Simon, J. Am. Ceram. Soc. 65, 539 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10778.x
  5. Y. Okino, N. Kohzu, Y. Mizuno, M. Honda, H. Chazono, and H. Kishi, Key Eng. Mater. 157, 9 (1999).
  6. D. Tinberg, and S. T. McKinstry, J. Appl. Phys. 101, 024112 (2007). https://doi.org/10.1063/1.2430627
  7. H. Y. Guo, C. Lei, and Z. G. Ye, Appl. Phys. Lett. 92, 172901 (2008). https://doi.org/10.1063/1.2913208
  8. H. Ogihara, S. T. McKinstry, and C. A. Randall, Fall Meeting in Center for Dielectric Studies, State College, USA (2007)
  9. C. F. Buhrer, J. Chem. Phys. 36, 798 (1962). https://doi.org/10.1063/1.1732613
  10. Y. Hiruma, R. Aoyagi, H. Nagata, and T. Takenaka, Jpn. J. Appl. Phys. 44, 5040 (2005). https://doi.org/10.1143/JJAP.44.5040
  11. H. Y. Park, K. H. Cho, D. S. Paik, S. Nahm, H. G. Lee, D. H. Kim, J. Appl. Phys. Lett. 102, 124101 (2007).
  12. N. Setter, and L. E. Cross, J. Appl. Phys. 51, 4356 (1980). https://doi.org/10.1063/1.328296
  13. J. C. Nino, Ph. D. Thesis, The Pennsylvania State University, USA (2002).
  14. C. J. Stringer, Ph. D. Thesis, The Pennsylvania State University, USA (2006).
  15. D. Viehland, S. J. Jang, and L. E. Cross, J. Appl. Phys. 68, 2916(1990). https://doi.org/10.1063/1.346425
  16. B. Jaffe, Proc. IRE. 49, 1264 (1961). https://doi.org/10.1109/JRPROC.1961.287917
  17. G. J. HILL, Proc. Brit. Ceram. Soc. 18, 201 (1970).
  18. G. R. Love, J. Am. Ceram. Soc. 73, 323 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06513.x
  19. A. J. Moulson, and J. M. Herbert, Electroceramics: Materials, Properties, Applications, 2 nd ed., John Wiley & Sons Ltd. New York (2003).
  20. T. R. Shrout, R. Eitel, and C. A. Randall, Piezoelectric Materials in Devices, (ed., N. Setter), p. 413, Lausanne, Switzerland (2002).

Cited by

  1. Properties of BaTiO3 Films Sputter Deposited on PET for Pulse Power Capacitors vol.457, pp.1, 2011, https://doi.org/10.1080/00150193.2013.848761
  2. Effect of sintering temperature on phase structure, microstructure, and electrical properties of (K0.5Na0.5)NbO3-(Ba0.6Sr0.4)0.7Bi0.2TiO3 lead-free ceramics vol.49, pp.4, 2011, https://doi.org/10.1007/s10853-013-7870-z
  3. Effects of Sputtering Pressure on the Properties of BaTiO3 Films for High Energy Density Capacitors vol.24, pp.4, 2011, https://doi.org/10.3740/mrsk.2014.24.4.207
  4. Low dielectric loss and good thermal stability of Eu and Ti co-doped K0.5Na0.5NbO3 ceramics vol.26, pp.9, 2011, https://doi.org/10.1007/s10854-015-3340-5
  5. Microstructure and dielectric properties of (K0.5Na0.5)NbO3-Bi(Zn2/3Nb1/3)O3 − xmol%CeO2 lead-free ceramics for high temperature capacitor applications vol.26, pp.11, 2015, https://doi.org/10.1007/s10854-015-3597-8
  6. Phase Structure, Microstructure and Dielectric Properties of (K0.5Na0.5)NbO3‐LaFeO3 High‐Temperature Dielectric Ceramics vol.12, pp.suppl1, 2011, https://doi.org/10.1111/ijac.12179
  7. High‐Temperature Multilayer Ceramic Capacitors Based on 100−x(94Bi1/2Na1/2TiO3–6BaTiO3)–xK0.5Na0.5NbO vol.99, pp.6, 2011, https://doi.org/10.1111/jace.14097
  8. Dielectric properties and microstructures of Ta-doped BaTiO3–(Bi0.5Na0.5)TiO3 ceramics for X9R applications vol.28, pp.4, 2011, https://doi.org/10.1007/s10854-016-5986-z
  9. Excellent thermal stability and low dielectric loss of (Ba1 − xBi0.5xSr0.5x)(Ti1 − xBi0.5xZr0.5x)O3 solid solution ceramics in a broad temperature range applied in X8R vol.124, pp.11, 2011, https://doi.org/10.1007/s00339-018-2194-0
  10. High‐energy storage and temperature stable dielectrics properties of lead‐free BiScO 3 -BaTiO 3 - x (Bi 0.5 Na 0.5 )TiO 3 ceramics vol.1, pp.4, 2011, https://doi.org/10.1049/iet-nde.2018.0013
  11. Strategies to Improve the Energy Storage Properties of Perovskite Lead-Free Relaxor Ferroelectrics: A Review vol.13, pp.24, 2020, https://doi.org/10.3390/ma13245742