Calorie Restriction and Obesity under the Regulation of SIRT1

SIRT1의 조절 하에서 칼로리 제한과 비만

Choi, Il-Sook;Kim, Kyung-Ah;Yim, Jung-Eun;Kim, Young-Seol

  • Published : 20111200

Abstract

Obesity is one of the most important risk factors for various chronic diseases, especially related with environmental life style and eating habits. Obesity is also a risk factor of metabolic diseases, cardiovascular diseases, diabetes, and certain cancers. Numerous studies of calorie restriction (CR) in various organisms have shown several beneficial effects of not only decreased body fat and blood pressure, decreased inflammatory markers in plasma, increased insulin sensitivity, and improved lipid profile but also improved endothelial function, decreased oxidative damage by reducing energy flux and metabolism, and decreased ectopic fat accumulation. Furthermore, CR activates SIRT1, a nutrient-sensing deacetylase, involved in metabolic regulation and longevity. Resveratrol, as a mimetic of CR, is one of well-known sirtuin activating compounds. Resveratrol is related with longer lifespan by increasing insulin sensitivity, decreasing insulin-like growth factor-1, and increasing AMP-activated protein kinase activity. Therefore, the present review focuses on CR related with obesity and also the relationship between CR and SIRT1 in metabolic mechanism levels. Furthermore, we will introduce resveratrol, as an activator of SIRT1, and the beneficial effects of resveratrol.

비만은 환경, 생활습관, 식습관 등과 관련된 질환에 있어서 가장 중요한 위험인자이며, 대사성 질환, 심혈관계 질환, 당뇨및 암 등과 밀접한 연관성을 가지고 있다. 최근 칼로리제한(calorie restriction, CR)에 대한 많은 연구들을 통하여 체지방과 혈압의 감소 및 혈액 내 염증성 인자들의 감소, 인슐린 민감성과 혈액 내 지질조성의 향상 등이 발표되고 있다. 또한 대사조절 및 장수에 연관되며 영양소에 민감한 deacetylase인 SIRT1도 CR을 통하여 활성화됨이 보고되고 있다. 더불어, CR과 유사한 기능을 지니는 폴리페놀계의 일종인 resveratrol은 SIRT1 활성물질로써 인슐린의 민감성 증가, IGF-1의 감소 및 AMPK의 활성화의 기능 등과 함께, CR과 유사한 기능을 지닌 물질(sirtuin activating compounds, STACs)로 알려져 있다. 따라서 본 review에서는 비만과 연관된 CR에 관한 문헌들을 정리하고, CR과 SIRT1과 연관성을 대사적 메커니즘의 차원에서 설명하며, CR유사물질로 알려진 resveratrol의 효능에 관하여 보고하고자 한다.

Keywords

References

  1. Rolls BJ, Roe LS, Meengs JS. Larger portion sizes lead to a sustained increase in energy intake over 2 days. J Am Diet Assoc 2006;106:543-9. https://doi.org/10.1016/j.jada.2006.01.014
  2. Astrup A, Dyerberg J, Selleck M, Stender S. Nutrition transition and its relationship to the development of obesity and related chronic diseases. Obes Rev 2008;9 Suppl 1:48-52. https://doi.org/10.1111/j.1467-789X.2007.00438.x
  3. McDonald RB, Ramsey JJ. Honoring Clive McCay and 75 years of calorie restriction research. J Nutr 2010;140:1205-10. https://doi.org/10.3945/jn.110.122804
  4. Fontana L, Villareal DT, Weiss EP, Racette SB, Steger-May K, Klein S, et al. Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial. Am J Physiol Endocrinol Metab 2007;293:E197-202. https://doi.org/10.1152/ajpendo.00102.2007
  5. Zhu M, de Cabo R, Anson RM, Ingram DK, Lane MA. Caloric restriction modulates insulin receptor signaling in liver and skeletal muscle of rat. Nutrition 2005;21:378-88. https://doi.org/10.1016/j.nut.2004.06.030
  6. Marzetti E, Wohlgemuth SE, Anton SD, Bernabei R, Carter CS, Leeuwenburgh C. Cellular mechanisms of cardioprotection by calorie restriction: state of the science and future perspectives. Clin Geriatr Med 2009;25:715-32. https://doi.org/10.1016/j.cger.2009.07.002
  7. Holloszy JO, Fontana L. Caloric restriction in humans. Exp Gerontol 2007;42:709-12. https://doi.org/10.1016/j.exger.2007.03.009
  8. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005;6:298-305. https://doi.org/10.1038/nrm1616
  9. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010;12:662-7. https://doi.org/10.1016/j.cmet.2010.11.015
  10. Kume S, Uzu T, Kashiwagi A, Koya D. SIRT1, a calorie restriction mimetic, in a new therapeutic approach for type 2 diabetes mellitus and diabetic vascular complications. Endocr Metab Immune Disord Drug Targets 2010;10:16-24. https://doi.org/10.2174/187153010790827957
  11. Redman LM, Heilbronn LK, Martin CK, Alfonso A, Smith SR, Ravussin E. Effect of calorie restriction with or without exercise on body composition and fat distribution. J Clin Endocrinol Metab 2007;92:865-72. https://doi.org/10.1210/jc.2006-2184
  12. Larson-Meyer DE, Heilbronn LK, Redman LM, Newcomer BR, Frisard MI, Anton S, et al. Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care 2006;29:1337-44. https://doi.org/10.2337/dc05-2565
  13. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, et al. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 2006;295:1539-48. https://doi.org/10.1001/jama.295.13.1539
  14. Anderlova K, Kremen J, Dolezalova R, Housova J, Haluzíkova D, Kunesova M, et al. The influence of very-low-calorie-diet on serum leptin, soluble leptin receptor, adiponectin and resistin levels in obese women. Physiol Res 2006;55:277-83.
  15. Xydakis AM, Case CC, Jones PH, Hoogeveen RC, Liu MY, Smith EO, et al. Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight loss through caloric restriction. J Clin Endocrinol Metab 2004;89:2697-703. https://doi.org/10.1210/jc.2003-031826
  16. Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB, et al. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial. Am J Clin Nutr 2006;84:1033-42. https://doi.org/10.1093/ajcn/84.5.1033
  17. Mraz M, Lacinova Z, Drapalova J, Haluzikova D, Horinek A, Matoulek M, et al. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2011;96:E606-13. https://doi.org/10.1210/jc.2010-1858
  18. Reverter-Branchat G, Cabiscol E, Tamarit J, Ros J. Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: common targets and prevention by calorie restriction. J Biol Chem 2004;279:31983-9. https://doi.org/10.1074/jbc.M404849200
  19. Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature 2006;444:868-74. https://doi.org/10.1038/nature05486
  20. Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000;289:2126-8. https://doi.org/10.1126/science.289.5487.2126
  21. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001;410:227-30. https://doi.org/10.1038/35065638
  22. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425:191-6. https://doi.org/10.1038/nature01960
  23. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006;444:337-42. https://doi.org/10.1038/nature05354
  24. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J 2007;404:1-13. https://doi.org/10.1042/BJ20070140
  25. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005;16:4623-35. https://doi.org/10.1091/mbc.E05-01-0033
  26. Huang JY, Hirschey MD, Shimazu T, Ho L, Verdin E. Mitochondrial sirtuins. Biochim Biophys Acta 2010;1804:1645-51. https://doi.org/10.1016/j.bbapap.2009.12.021
  27. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 2004;305:390-2. https://doi.org/10.1126/science.1099196
  28. Crujeiras AB, Parra D, Goyenechea E, Martinez JA. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest 2008;38:672-8. https://doi.org/10.1111/j.1365-2362.2008.01998.x
  29. Geng YQ, Li TT, Liu XY, Li ZH, Fu YC. SIRT1 and SIRT5 activity expression and behavioral responses to calorie restriction. J Cell Biochem 2011;112:3755-61. https://doi.org/10.1002/jcb.23315
  30. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000;403:795-800. https://doi.org/10.1038/35001622
  31. Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem 2006;75:435-65. https://doi.org/10.1146/annurev.biochem.74.082803.133500
  32. Imai S, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 2010;31:212-20. https://doi.org/10.1016/j.tips.2010.02.003
  33. Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A 2007;104:12861-6. https://doi.org/10.1073/pnas.0702509104
  34. Erion DM, Yonemitsu S, Nie Y, Nagai Y, Gillum MP, Hsiao JJ, et al. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc Natl Acad Sci U S A 2009;106:11288-93. https://doi.org/10.1073/pnas.0812931106
  35. Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 2005;280:20589-95. https://doi.org/10.1074/jbc.M412357200
  36. Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 2007;28:91-106. https://doi.org/10.1016/j.molcel.2007.07.032
  37. Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, et al. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 2010;285:33959-70. https://doi.org/10.1074/jbc.M110.122978
  38. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 2007;26:1913-23. https://doi.org/10.1038/sj.emboj.7601633
  39. Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, et al. SIRT1 improves insulin sensitivity under insulinresistant conditions by repressing PTP1B. Cell Metab 2007;6:307-19. https://doi.org/10.1016/j.cmet.2007.08.014
  40. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771-6. https://doi.org/10.1038/nature02583
  41. Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 2006;281:39915-24. https://doi.org/10.1074/jbc.M607215200
  42. Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL, et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 2009;29:1363-74. https://doi.org/10.1128/MCB.00705-08
  43. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006;5:493-506. https://doi.org/10.1038/nrd2060
  44. Chen XW, Serag ES, Sneed KB, Zhou SF. Herbal bioactivation, molecular targets and the toxicity relevance. Chem Biol Interact 2011;192:161-76. https://doi.org/10.1016/j.cbi.2011.03.016
  45. Vidavalur R, Otani H, Singal PK, Maulik N. Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol 2006;11:217-25.
  46. de Gaetano G, De Curtis A, di Castelnuovo A, Donati MB, Iacoviello L, Rotondo S. Antithrombotic effect of polyphenols in experimental models: a mechanism of reduced vascular risk by moderate wine consumption. Ann N Y Acad Sci 2002;957:174-88. https://doi.org/10.1111/j.1749-6632.2002.tb02915.x
  47. Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 2005;49:472-81. https://doi.org/10.1002/mnfr.200500010
  48. Das DK, Mukherjee S, Ray D. Resveratrol and red wine, healthy heart and longevity. Heart Fail Rev 2010;15:467-77. https://doi.org/10.1007/s10741-010-9163-9
  49. Rocha-Gonzalez HI, Ambriz-Tututi M, Granados-Soto V. Resveratrol: a natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci Ther 2008;14:234-47. https://doi.org/10.1111/j.1755-5949.2008.00045.x
  50. Das M, Das DK. Resveratrol and cardiovascular health. Mol Aspects Med 2010;31:503-12. https://doi.org/10.1016/j.mam.2010.09.001
  51. Singh NP, Singh UP, Hegde VL, Guan H, Hofseth L, Nagarkatti M, et al. Resveratrol (trans-3,5,4'-trihydroxystilbene) suppresses EL4 tumor growth by induction of apoptosis involving reciprocal regulation of SIRT1 and NF-kappaB. Mol Nutr Food Res 2011;55:1207-18. https://doi.org/10.1002/mnfr.201000576
  52. Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, et al. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab 2010;298:E751-60. https://doi.org/10.1152/ajpendo.00745.2009