DOI QR코드

DOI QR Code

Biomarkers Predicting Alzheimer's Disease in Cognitively Normal Aging

  • Shim, Yong-S. (Department of Neurology, Bucheon St. Mary's Hospital, The Catholic University of Korea College of Medicine) ;
  • Morris, John C. (Knight Alzheimer's Disease Research Center)
  • Published : 2011.06.30

Abstract

The pathophysiologic process of Alzheimer's disease (AD) begins years before the diagnosis of clinical dementia. This concept of preclinical AD has arisen from the observation of AD pathologic findings such as senile plaques and neurofibrillary tangles in the brains of people who at the time of death had normal cognitive function. Recent advances in biomarker studies now provide the ability to detect the pathologic changes of AD, which are antecedent to symptoms of the illness, in cognitively normal individuals. Functional and structural brain alterations that begin with amyloid-${\beta}$ accumulation already show the patterns of abnormality seen in individuals with dementia due to AD. The presence of preclinical AD provides a critical opportunity for potential interventions with disease-modifying therapy. This review focuses on the studies of antecedent biomarkers for preclinical AD.

Keywords

References

  1. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82:239-259. https://doi.org/10.1007/BF00308809
  2. Khachaturian ZS. Diagnosis of Alzheimer's disease. Arch Neurol 1985; 42:1097-1105. https://doi.org/10.1001/archneur.1985.04060100083029
  3. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 1991;41:479-486. https://doi.org/10.1212/WNL.41.4.479
  4. Hyman BT, Trojanowski JQ. Consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 1997;56:1095-1097. https://doi.org/10.1097/00005072-199710000-00002
  5. Price JL, Morris JC. Tangles and plaques in nondemented aging and "preclinical" Alzheimer's disease. Ann Neurol 1999;45:358-368. https://doi.org/10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
  6. Fagan AM, Mintun MA, Shah AR, Aldea P, Roe CM, Mach RH, et al. Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer's disease. EMBO Mol Med 2009;1:371-380. https://doi.org/10.1002/emmm.200900048
  7. Morris JC, McKeel DW Jr, Storandt M, Rubin EH, Price JL, Grant EA, et al. Very mild Alzheimer's disease: informant-based clinical, psychometric, and pathologic distinction from normal aging. Neurology 1991; 41:469-478. https://doi.org/10.1212/WNL.41.4.469
  8. Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 2001;58:1395-1402. https://doi.org/10.1001/archneur.58.9.1395
  9. Morris JC, Price AL. Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer's disease. J Mol Neurosci 2001;17:101-118. https://doi.org/10.1385/JMN:17:2:101
  10. Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C; Medical Research Council Cognitive Function and Ageing Study. Age, neuropathology, and dementia. N Engl J Med 2009;360:2302-2309. https://doi.org/10.1056/NEJMoa0806142
  11. Stern Y. Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 2006;20:112-117. https://doi.org/10.1097/01.wad.0000213815.20177.19
  12. Mortimer JA, Borenstein AR, Gosche KM, Snowdon DA. Very early detection of Alzheimer neuropathology and the role of brain reserve in modifying its clinical expression. J Geriatr Psychiatry Neurol 2005;18: 218-223. https://doi.org/10.1177/0891988705281869
  13. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004;256:183-194. https://doi.org/10.1111/j.1365-2796.2004.01388.x
  14. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, et al. Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6: 734-746. https://doi.org/10.1016/S1474-4422(07)70178-3
  15. Craig-Schapiro R, Fagan AM, Holtzman DM. Biomarkers of Alzheimer's disease. Neurobiol Dis 2009;35:128-140. https://doi.org/10.1016/j.nbd.2008.10.003
  16. Tarawneh R, Holtzman DM. Biomarkers in translational research of Alzheimer's disease. Neuropharmacology 2010;59:310-322. https://doi.org/10.1016/j.neuropharm.2010.04.006
  17. Haass C, Selkoe DJ. Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 1993;75:1039-1042. https://doi.org/10.1016/0092-8674(93)90312-E
  18. van Gool WA, Kuiper MA, Walstra GJ, Wolters EC, Bolhuis PA. Concentrations of amyloid beta protein in cerebrospinal fluid of patients with Alzheimer's disease. Ann Neurol 1995;37:277-279. https://doi.org/10.1002/ana.410370221
  19. Shoji M, Matsubara E, Kanai M, Watanabe M, Nakamura T, Tomidokoro Y, et al. Combination assay of CSF tau, A beta 1-40 and A beta 1-42(43) as a biochemical marker of Alzheimer's disease. J Neurol Sci 1998;158:134-140. https://doi.org/10.1016/S0022-510X(98)00122-1
  20. Verbeek MM, Kremer BP, Rikkert MO, Van Domburg PH, Skehan ME, Greenberg SM. Cerebrospinal fluid amyloid beta(40) is decreased in cerebral amyloid angiopathy. Ann Neurol 2009;66:245-249. https://doi.org/10.1002/ana.21694
  21. Blennow K, Vanmechelen E, Hampel H. CSF total tau, Abeta42 and phosphorylated tau protein as biomarkers for Alzheimer's disease. Mol Neurobiol 2001;24:87-97. https://doi.org/10.1385/MN:24:1-3:087
  22. Roher AE, Lowenson JD, Clarke S, Woods AS, Cotter RJ, Gowing E, et al. beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci USA 1993;90:10836-10840. https://doi.org/10.1073/pnas.90.22.10836
  23. Motter R, Vigo-Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K, Galasko D, et al. Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer's disease. Ann Neurol 1995; 38:643-648. https://doi.org/10.1002/ana.410380413
  24. Riemenschneider M, Wagenpfeil S, Diehl J, Lautenschlager N, Theml T, Heldmann B, et al. Tau and Abeta42 protein in CSF of patients with frontotemporal degeneration. Neurology 2002;58:1622-1628. https://doi.org/10.1212/WNL.58.11.1622
  25. Sjogren M, Minthon L, Davidsson P, Granerus A-K, Clarberg A, Van-derstichele H, et al. CSF levels of tau, beta-amyloid(1-42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J Neural Transm 2000;107:563-579. https://doi.org/10.1007/s007020070079
  26. Clark CM, Xie S, Chittams J, Ewbank D, Peskind E, Galasko D, et al. Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 2003; 60:1696-1702. https://doi.org/10.1001/archneur.60.12.1696
  27. Bateman RJ, Wen G, Morris JC, Holtzman DM. Fluctuations of CSF amyloid-beta levels: implications for a diagnostic and therapeutic biomarker. Neurology 2007;68:666-669. https://doi.org/10.1212/01.wnl.0000256043.50901.e3
  28. Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH, et al. Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 2003;289: 2094-2103. https://doi.org/10.1001/jama.289.16.2094
  29. Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007;68: 1718-1725. https://doi.org/10.1212/01.wnl.0000261919.22630.ea
  30. Kosaka T, Imagawa M, Seki K, Arai H, Sasaki H, Tsuji S, et al. The beta APP717 Alzheimer mutation increases the percentage of plasma amyloid-beta protein ending at A beta42(43). Neurology 1997;48:741-745. https://doi.org/10.1212/WNL.48.3.741
  31. Fukumoto H, Tennis M, Locascio JJ, Hyman BT, Growdon JH, Irizarry MC. Age but not diagnosis is the main predictor of plasma amyloid beta-protein levels. Arch Neurol 2003;60:958-964. https://doi.org/10.1001/archneur.60.7.958
  32. Mehta PD, Pirttila T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM. Plasma and cerebrospinal fluid levels of amyloid beta proteins 1-40 and 1-42 in Alzheimer disease. Arch Neurol 2000;57:100-105. https://doi.org/10.1001/archneur.57.1.100
  33. Vanderstichele H, Van Kerschaver E, Hesse C, Davidsson P, Buyse MA, Andreasen N, et al. Standardization of measurement of beta-amyloid(1-42) in cerebrospinal fluid and plasma. Amyloid 2000;7:245-258. https://doi.org/10.3109/13506120009146438
  34. Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 2007; 64:343-349. https://doi.org/10.1001/archneur.64.3.noc60123
  35. Itoh N, Arai H, Urakami K, Ishiguro K, Ohno H, Hampel H, et al. Large-scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer's disease. Ann Neurol 2001;50:150-156. https://doi.org/10.1002/ana.1054
  36. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol 2009;65:403-413. https://doi.org/10.1002/ana.21610
  37. Mandelkow EM, Mandelkow E. Tau in Alzheimer's disease. Trends Cell Biol 1998;8:425-427. https://doi.org/10.1016/S0962-8924(98)01368-3
  38. Blennow K, Hampel H. CSF markers for incipient Alzheimer's disease. Lancet Neurol 2003;2:605-613. https://doi.org/10.1016/S1474-4422(03)00530-1
  39. Hampel H, Buerger K, Zinkowski R, Teipel SJ, Goernitz A, Andreasen N, et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry 2004;61:95-102. https://doi.org/10.1001/archpsyc.61.1.95
  40. Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Arai H, Blennow K, et al. Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol 2002;59:1267-1272. https://doi.org/10.1001/archneur.59.8.1267
  41. De Leon MJ, George AE, Golomb J, Tarshish C, Convit A, Kluger A, et al. Frequency of hippocampal formation atrophy in normal aging and Alzheimer's disease. Neurobiol Aging 1997;18:1-11. https://doi.org/10.1016/S0197-4580(96)00213-8
  42. Jobst KA, Smith AD, Barker CS, Wear A, King EM, Smith A, et al. Association of atrophy of the medial temporal lobe with reduced blood flow in the posterior parietotemporal cortex in patients with a clinical and pathological diagnosis of Alzheimer's disease. J Neurol Neurosurg Psychiatry 1992;55:190-194. https://doi.org/10.1136/jnnp.55.3.190
  43. Bosscher L, Scheltens PH, editor. MRI of the temporal lobe. Evidence based dementia. Oxford: Blackwell; 2001.
  44. Tapiola T, Pennanen C, Tapiola M, Tervo S, Kivipelto M, Hanninen T, et al. MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study. Neurobiol Aging 2008;29:31-38. https://doi.org/10.1016/j.neurobiolaging.2006.09.007
  45. deToledo-Morrell L, Stoub TR, Bulgakova M, Wilson RS, Bennett DA, Leurgans S, et al. MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 2004;25:1197-1203. https://doi.org/10.1016/j.neurobiolaging.2003.12.007
  46. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, et al. Dynamics of gray matter loss in Alzheimer's disease. J Neurosci 2003;23:994-1005.
  47. Fotenos AF, Snyder AZ, Girton LE, Morris JC, Buckner RL. Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 2005;64:1032-1039. https://doi.org/10.1212/01.WNL.0000154530.72969.11
  48. Carlson NE, Moore MM, Dame A, Howieson D, Silbert LC, Quinn JF, et al. Trajectories of brain loss in aging and the development of cognitive impairment. Neurology 2008;70:828-833. https://doi.org/10.1212/01.wnl.0000280577.43413.d9
  49. Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, et al. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease. Neuroscience 2000;95:721-725.
  50. Zarow C, Vinters HV, Ellis WG, Weiner MW, Mungas D, White L, et al. Correlates of hippocampal neuron number in Alzheimer's disease and ischemic vascular dementia. Ann Neurol 2005;57:896-903. https://doi.org/10.1002/ana.20503
  51. Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 2009;73:294-301. https://doi.org/10.1212/WNL.0b013e3181af79fb
  52. Sluimer JD, Bouwman FH, Vrenken H, Blankenstein MA, Barkhof F, van der Flier WM, et al. Whole-brain atrophy rate and CSF biomarker levels in MCI and AD: a longitudinal study. Neurobiol Aging 2010; 31:758-764. https://doi.org/10.1016/j.neurobiolaging.2008.06.016
  53. Coleman RE. Positron emission tomography diagnosis of Alzheimer's disease. Neuroimaging Clin N Am 2005;15:837-846, x. https://doi.org/10.1016/j.nic.2005.09.007
  54. Patwardhan MB, McCrory DC, Matchar DB, Samsa GP, Rutschmann OT. Alzheimer disease: operating characteristics of PET--a meta-analysis. Radiology 2004;231:73-80. https://doi.org/10.1148/radiol.2311021620
  55. de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, et al. Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A 2001;98:10966-10971. https://doi.org/10.1073/pnas.191044198
  56. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 2003;30:1104-1113. https://doi.org/10.1007/s00259-003-1194-1
  57. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993;43:2412-2414.
  58. de Leon MJ, Mosconi L, Blennow K, DeSanti S, Zinkowski R, Mehta PD, et al. maging and CSF studies in the preclinical diagnosis of Alzheimer's disease. Ann N Y Acad Sci 2007;1097:114-145. https://doi.org/10.1196/annals.1379.012
  59. Jagust WJ, Landau SM, Shaw LM, Trojanowski JQ, Koeppe RA, Reiman EM, et al. Relationships between biomarkers in aging and dementia. Neurology 2009;73:1193-1199. https://doi.org/10.1212/WNL.0b013e3181bc010c
  60. Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 2003;46:2740-2754. https://doi.org/10.1021/jm030026b
  61. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 2004;55:306-319. https://doi.org/10.1002/ana.20009
  62. Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer's disease. Brain 2006;129:2856-2866. https://doi.org/10.1093/brain/awl178
  63. Jack CR Jr, Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008;131:665-680. https://doi.org/10.1093/brain/awm336
  64. Choi SR, Golding G, Zhuang Z, Zhang W, Lim N, Hefti F, et al. Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. J Nucl Med 2009;50:1887-1894. https://doi.org/10.2967/jnumed.109.065284
  65. Sperling R, Johnson K, Pontecorvo M, Safirstein B, Farmer M, Holub R, et al. PET imaging of $\beta$-amyloid with florpiramine F18 (18F-AV-45): preliminary results from a phase II study of cognitive normal elderly subjects, individuals with mild cognitive impairment, and patients with a clinical diagnosis of Alzheimer's disease. Alzheimers Dement 2009;5:1997.
  66. Mintun M, Saha K, Fleisher A, Schneider J, Beach T, Bedell B, et al. Florbetapir (18F-AV-45) PET imaging of $\beta$-amyloid plaques is highly correlated with histopathological assays at autopsy. J Nucl Med 2010; 51:387.
  67. Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006;67:446-452. https://doi.org/10.1212/01.wnl.0000228230.26044.a4
  68. Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 2006;59:512-519. https://doi.org/10.1002/ana.20730
  69. Morris JC, Roe CM, Grant EA, Head D, Storandt M, Goate AM, et al. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol 2009;66:1469-1475. https://doi.org/10.1001/archneurol.2009.269
  70. Fagan AM, Head D, Shah AR, Marcus D, Mintun M, Morris JC, et al. Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol 2009;65:176-183. https://doi.org/10.1002/ana.21559
  71. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, et al. Brain atrophy in healthy aging is related to CSF levels of $A\beta1-42$. Cereb Cortex 2010;20:2069-2079. https://doi.org/10.1093/cercor/bhp279
  72. Li G, Sokal I, Quinn JF, Leverenz JB, Brodey M, Schellenberg GD, et al. CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology 2007;69:631-639. https://doi.org/10.1212/01.wnl.0000267428.62582.aa
  73. Cairns NJ, Ikonomovic MD, Benzinger T, Storandt M, Fagan AM, Shah AR, et al. Absence of Pittsburgh compound B detection of cerebral amyloid beta in a patient with clinical, cognitive, and cerebrospinal fluid markers of Alzheimer disease: a case report. Arch Neurol 2009;66:1557-1562. https://doi.org/10.1001/archneurol.2009.279
  74. Morris JC, Roe CM, Xiong C, Fagan AM, Goate AM, Holtzman DM, et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol 2010;67:122-131. https://doi.org/10.1002/ana.21843
  75. Moonis M, Swearer JM, Dayaw MP, St George-Hyslop P, Rogaeva E, Kawarai T, et al. Familial Alzheimer disease: decreases in CSF Abeta42 levels precede cognitive decline. Neurology 2005;65:323-325. https://doi.org/10.1212/01.wnl.0000171397.32851.bc
  76. Ringman JM, Younkin SG, Pratico D, Seltzer W, Cole GM, Geschwind DH, et al. Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology 2008;71:85-92. https://doi.org/10.1212/01.wnl.0000303973.71803.81
  77. Godbolt AK, Cipolotti L, Watt H, Fox NC, Janssen JC, Rossor MN. The natural history of Alzheimer disease: a longitudinal presymptomatic and symptomatic study of a familial cohort. Arch Neurol 2004; 61:1743-1748. https://doi.org/10.1001/archneur.61.11.1743
  78. Raber J, Huang Y, Ashford JW. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging 2004;25: 641-650. https://doi.org/10.1016/j.neurobiolaging.2003.12.023
  79. Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L, Schellenberg GD, et al. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol 2002;59:1737-1746. https://doi.org/10.1001/archneur.59.11.1737
  80. Silverman JM, Raiford K, Edland S, Fillenbaum G, Morris JC, Clark CM, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part VI. Family history assessment: a multicenter study of first-degree relatives of Alzheimer's disease probands and nondemented spouse controls. Neurology 1994;44:1253-1259. https://doi.org/10.1212/WNL.44.7.1253
  81. Johnson DK, Storandt M, Morris JC, Galvin JE. Longitudinal study of the transition from healthy aging to Alzheimer disease. Arch Neurol 2009;66:1254-1259. https://doi.org/10.1001/archneurol.2009.158

Cited by

  1. Neuroimaging Results Impose New Views on Alzheimer’s Disease-the Role of Amyloid Revised vol.45, pp.1, 2011, https://doi.org/10.1007/s12035-011-8228-7
  2. Heat-processed ginseng enhances the cognitive function in patients with moderately severe Alzheimer's disease vol.15, pp.6, 2011, https://doi.org/10.1179/1476830512y.0000000027
  3. Role of proteomics in biomarker discovery and psychiatric disorders: current status, potentials, limitations and future challenges vol.9, pp.3, 2012, https://doi.org/10.1586/epr.12.25
  4. The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry vol.6, pp.None, 2012, https://doi.org/10.3389/fnins.2012.00152
  5. The Relationship Between Brain Aging and Preclinical Alzheimer′s Disease : The Relationship Between Brain Aging and Preclinical Alzheimer′s Disease vol.39, pp.8, 2011, https://doi.org/10.3724/sp.j.1206.2012.00351
  6. Coenzyme Q10 protects against amyloid beta-induced neuronal cell death by inhibiting oxidative stress and activating the P13K pathway vol.33, pp.1, 2012, https://doi.org/10.1016/j.neuro.2011.12.005
  7. PET amyloid-beta imaging in preclinical Alzheimer's disease vol.1822, pp.3, 2012, https://doi.org/10.1016/j.bbadis.2011.11.005
  8. The Roles of Neutral Sphingomyelinases in Neurological Pathologies vol.37, pp.6, 2012, https://doi.org/10.1007/s11064-011-0692-y
  9. Alkaloids from Zephyranthes robusta Baker and Their Acetylcholinesterase‐ and Butyrylcholinesterase‐Inhibitory Activity vol.10, pp.6, 2013, https://doi.org/10.1002/cbdv.201200144
  10. The curry spice curcumin attenuates beta-amyloid-induced toxicity through beta-catenin and PI3K signaling in rat organotypic hippocampal slice culture vol.35, pp.8, 2013, https://doi.org/10.1179/1743132813y.0000000225
  11. Age-related alteration in cerebral blood flow and energy failure is correlated with cognitive impairment in the senescence-accelerated prone mouse strain 8 (SAMP8) vol.34, pp.11, 2011, https://doi.org/10.1007/s10072-013-1407-8
  12. Before it is too late: professional responsibilities in late-onset Alzheimer’s research and pre-symptomatic prediction vol.8, pp.None, 2011, https://doi.org/10.3389/fnhum.2014.00921
  13. Default Mode Network Functional Connectivity in Early and Late Mild Cognitive Impairment: Results From the Alzheimer’s Disease Neuroimaging Initiative vol.30, pp.4, 2016, https://doi.org/10.1097/wad.0000000000000143
  14. 알츠하이머병 진단에서 18F-Florbetaben의 유용성 vol.10, pp.5, 2011, https://doi.org/10.7742/jksr.2016.10.5.307
  15. Morphological and Microstructural Changes of the Hippocampus in Early MCI: A Study Utilizing the Alzheimer's Disease Neuroimaging Initiative Database vol.13, pp.2, 2011, https://doi.org/10.3988/jcn.2017.13.2.144
  16. Longitudinal cortical thinning and cognitive decline in patients with early‐ versus late‐stage subcortical vascular mild cognitive impairment vol.25, pp.2, 2011, https://doi.org/10.1111/ene.13500
  17. Observational Study of Clinical and Functional Progression Based on Initial Brain MRI Characteristics in Patients with Alzheimer’s Disease vol.66, pp.4, 2018, https://doi.org/10.3233/jad-180565
  18. White matter hypointensities and hyperintensities have equivalent correlations with age and CSF β‐amyloid in the nondemented elderly vol.9, pp.12, 2019, https://doi.org/10.1002/brb3.1457
  19. Detection of gray matter microstructural changes in Alzheimer’s disease continuum using fiber orientation vol.20, pp.1, 2011, https://doi.org/10.1186/s12883-020-01939-2
  20. Association of Dipeptidyl Peptidase-4 Inhibitor Use and Amyloid Burden in Patients With Diabetes and AD-Related Cognitive Impairment vol.97, pp.11, 2011, https://doi.org/10.1212/wnl.0000000000012534